您当前的位置:首页 > IT编程 > Keras
| C语言 | Java | VB | VC | python | Android | TensorFlow | C++ | oracle | 学术与代码 | cnn卷积神经网络 | gnn | 图像修复 | Keras | 数据集 | Neo4j | 自然语言处理 | 深度学习 | 医学CAD | 医学影像 | 超参数 | pointnet | pytorch | 异常检测 | Transformers | 情感分类 | 知识图谱 |

自学教程:Python layers.SimpleRNN方法代码示例

51自学网 2020-12-01 11:09:06
  Keras
这篇教程Python layers.SimpleRNN方法代码示例写得很实用,希望能帮到您。

本文整理汇总了Python中keras.layers.SimpleRNN方法的典型用法代码示例。如果您正苦于以下问题:Python layers.SimpleRNN方法的具体用法?Python layers.SimpleRNN怎么用?Python layers.SimpleRNN使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在模块keras.layers的用法示例。

在下文中一共展示了layers.SimpleRNN方法的13个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于我们的系统推荐出更棒的Python代码示例。

示例1: _build_model

# 需要导入模块: from keras import layers [as 别名]# 或者: from keras.layers import SimpleRNN [as 别名]def _build_model(self, num_features, num_actions, max_history_len):        """Build a keras model and return a compiled model.        :param max_history_len: The maximum number of historical turns used to                                decide on next action"""        from keras.layers import Activation, Masking, Dense, SimpleRNN        from keras.models import Sequential        n_hidden = 8  # size of hidden layer in RNN        # Build Model        batch_input_shape = (None, max_history_len, num_features)        model = Sequential()        model.add(Masking(-1, batch_input_shape=batch_input_shape))        model.add(SimpleRNN(n_hidden, batch_input_shape=batch_input_shape))        model.add(Dense(input_dim=n_hidden, output_dim=num_actions))        model.add(Activation('softmax'))        model.compile(loss='categorical_crossentropy',                      optimizer='adam',                      metrics=['accuracy'])        logger.debug(model.summary())        return model 
开发者ID:Rowl1ng,项目名称:rasa_wechat,代码行数:25,代码来源:policy.py


示例2: test_tiny_sequence_simple_rnn_random

# 需要导入模块: from keras import layers [as 别名]# 或者: from keras.layers import SimpleRNN [as 别名]def test_tiny_sequence_simple_rnn_random(self):        np.random.seed(1988)        input_dim = 2        input_length = 4        num_channels = 3        # Define a model        model = Sequential()        model.add(SimpleRNN(num_channels, input_shape=(input_length, input_dim)))        # Set some random weights        model.set_weights(            [np.random.rand(*w.shape) * 0.2 - 0.1 for w in model.get_weights()]        )        # Test the keras model        self._test_model(model) 
开发者ID:apple,项目名称:coremltools,代码行数:19,代码来源:test_keras2_numeric.py


示例3: test_tiny_seq2seq_rnn_random

# 需要导入模块: from keras import layers [as 别名]# 或者: from keras.layers import SimpleRNN [as 别名]def test_tiny_seq2seq_rnn_random(self):        np.random.seed(1988)        input_dim = 2        input_length = 4        num_channels = 3        # Define a model        model = Sequential()        model.add(            SimpleRNN(                num_channels,                input_shape=(input_length, input_dim),                return_sequences=True,            )        )        # Set some random weights        model.set_weights(            [np.random.rand(*w.shape) * 0.2 - 0.1 for w in model.get_weights()]        )        # Test the keras model        self._test_model(model) 
开发者ID:apple,项目名称:coremltools,代码行数:25,代码来源:test_keras2_numeric.py


示例4: test_rnn_seq

# 需要导入模块: from keras import layers [as 别名]# 或者: from keras.layers import SimpleRNN [as 别名]def test_rnn_seq(self):        np.random.seed(1988)        input_dim = 11        input_length = 5        # Define a model        model = Sequential()        model.add(            SimpleRNN(20, input_shape=(input_length, input_dim), return_sequences=False)        )        # Set some random weights        model.set_weights(            [np.random.rand(*w.shape) * 0.2 - 0.1 for w in model.get_weights()]        )        # Test the keras model        self._test_model(model) 
开发者ID:apple,项目名称:coremltools,代码行数:20,代码来源:test_keras2_numeric.py


示例5: test_medium_no_sequence_simple_rnn_random

# 需要导入模块: from keras import layers [as 别名]# 或者: from keras.layers import SimpleRNN [as 别名]def test_medium_no_sequence_simple_rnn_random(self):        np.random.seed(1988)        input_dim = 10        input_length = 1        num_channels = 10        # Define a model        model = Sequential()        model.add(SimpleRNN(num_channels, input_shape=(input_length, input_dim)))        # Set some random weights        model.set_weights(            [np.random.rand(*w.shape) * 0.2 - 0.1 for w in model.get_weights()]        )        # Test the keras model        self._test_model(model) 
开发者ID:apple,项目名称:coremltools,代码行数:19,代码来源:test_keras2_numeric.py


示例6: test_merge_mask_3d

# 需要导入模块: from keras import layers [as 别名]# 或者: from keras.layers import SimpleRNN [as 别名]def test_merge_mask_3d():    rand = lambda *shape: np.asarray(np.random.random(shape) > 0.5, dtype='int32')    # embeddings    input_a = layers.Input(shape=(3,), dtype='int32')    input_b = layers.Input(shape=(3,), dtype='int32')    embedding = layers.Embedding(3, 4, mask_zero=True)    embedding_a = embedding(input_a)    embedding_b = embedding(input_b)    # rnn    rnn = layers.SimpleRNN(3, return_sequences=True)    rnn_a = rnn(embedding_a)    rnn_b = rnn(embedding_b)    # concatenation    merged_concat = legacy_layers.merge([rnn_a, rnn_b], mode='concat', concat_axis=-1)    model = models.Model([input_a, input_b], [merged_concat])    model.compile(loss='mse', optimizer='sgd')    model.fit([rand(2, 3), rand(2, 3)], [rand(2, 3, 6)]) 
开发者ID:hello-sea,项目名称:DeepLearning_Wavelet-LSTM,代码行数:22,代码来源:layers_test.py


示例7: test_keras_import

# 需要导入模块: from keras import layers [as 别名]# 或者: from keras.layers import SimpleRNN [as 别名]def test_keras_import(self):        model = Sequential()        model.add(LSTM(64, return_sequences=True, input_shape=(10, 64)))        model.add(SimpleRNN(32, return_sequences=True))        model.add(GRU(10, kernel_regularizer=regularizers.l2(0.01),                      bias_regularizer=regularizers.l2(0.01), recurrent_regularizer=regularizers.l2(0.01),                      activity_regularizer=regularizers.l2(0.01), kernel_constraint='max_norm',                      bias_constraint='max_norm', recurrent_constraint='max_norm'))        model.build()        json_string = Model.to_json(model)        with open(os.path.join(settings.BASE_DIR, 'media', 'test.json'), 'w') as out:            json.dump(json.loads(json_string), out, indent=4)        sample_file = open(os.path.join(settings.BASE_DIR, 'media', 'test.json'), 'r')        response = self.client.post(reverse('keras-import'), {'file': sample_file})        response = json.loads(response.content)        layerId = sorted(response['net'].keys())        self.assertEqual(response['result'], 'success')        self.assertGreaterEqual(len(response['net'][layerId[1]]['params']), 7)        self.assertGreaterEqual(len(response['net'][layerId[3]]['params']), 7)        self.assertGreaterEqual(len(response['net'][layerId[6]]['params']), 7)# ********** Embedding Layers ********** 
开发者ID:Cloud-CV,项目名称:Fabrik,代码行数:25,代码来源:test_views.py


示例8: test_simple_rnn

# 需要导入模块: from keras import layers [as 别名]# 或者: from keras.layers import SimpleRNN [as 别名]def test_simple_rnn(self):        """        Test the conversion of a simple RNN layer.        """        from keras.layers import SimpleRNN        # Create a simple Keras model        model = Sequential()        model.add(SimpleRNN(32, input_dim=32, input_length=10))        input_names = ["input"]        output_names = ["output"]        spec = keras.convert(model, input_names, output_names).get_spec()        self.assertIsNotNone(spec)        # Test the model class        self.assertIsNotNone(spec.description)        self.assertTrue(spec.HasField("neuralNetwork"))        # Test the inputs and outputs        self.assertEquals(len(spec.description.input), len(input_names) + 1)        self.assertEquals(input_names[0], spec.description.input[0].name)        self.assertEquals(32, spec.description.input[1].type.multiArrayType.shape[0])        self.assertEquals(len(spec.description.output), len(output_names) + 1)        self.assertEquals(output_names[0], spec.description.output[0].name)        self.assertEquals(32, spec.description.output[0].type.multiArrayType.shape[0])        self.assertEquals(32, spec.description.output[1].type.multiArrayType.shape[0])        # Test the layer parameters.        layers = spec.neuralNetwork.layers        layer_0 = layers[0]        self.assertIsNotNone(layer_0.simpleRecurrent)        self.assertEquals(len(layer_0.input), 2)        self.assertEquals(len(layer_0.output), 2) 
开发者ID:apple,项目名称:coremltools,代码行数:38,代码来源:test_keras.py


示例9: test_tiny_no_sequence_simple_rnn_random

# 需要导入模块: from keras import layers [as 别名]# 或者: from keras.layers import SimpleRNN [as 别名]def test_tiny_no_sequence_simple_rnn_random(self):        np.random.seed(1988)        input_dim = 10        input_length = 1        num_channels = 1        # Define a model        model = Sequential()        model.add(SimpleRNN(num_channels, input_shape=(input_length, input_dim)))        # Set some random weights        model.set_weights([np.random.rand(*w.shape) for w in model.get_weights()])        # Test the keras model        self._test_model(model) 
开发者ID:apple,项目名称:coremltools,代码行数:17,代码来源:test_keras2_numeric.py


示例10: test_lstm_td

# 需要导入模块: from keras import layers [as 别名]# 或者: from keras.layers import SimpleRNN [as 别名]def test_lstm_td(self):        np.random.seed(1988)        input_dim = 2        input_length = 4        num_channels = 3        # Define a model        model = Sequential()        model.add(            SimpleRNN(                num_channels,                return_sequences=True,                input_shape=(input_length, input_dim),            )        )        model.add(TimeDistributed(Dense(5)))        # Set some random weights        model.set_weights(            [np.random.rand(*w.shape) * 0.2 - 0.1 for w in model.get_weights()]        )        # Test the keras model        self._test_model(model)    # Making sure that giant channel sizes get handled correctly 
开发者ID:apple,项目名称:coremltools,代码行数:28,代码来源:test_keras2_numeric.py


示例11: test_simple_rnn

# 需要导入模块: from keras import layers [as 别名]# 或者: from keras.layers import SimpleRNN [as 别名]def test_simple_rnn(self):        """        Test the conversion of a simple RNN layer.        """        from keras.layers import SimpleRNN        # Create a simple Keras model        model = Sequential()        model.add(SimpleRNN(32, input_shape=(10, 32)))        input_names = ["input"]        output_names = ["output"]        spec = keras.convert(model, input_names, output_names).get_spec()        self.assertIsNotNone(spec)        # Test the model class        self.assertIsNotNone(spec.description)        self.assertTrue(spec.HasField("neuralNetwork"))        # Test the inputs and outputs        self.assertEquals(len(spec.description.input), len(input_names) + 1)        self.assertEquals(input_names[0], spec.description.input[0].name)        self.assertEquals(32, spec.description.input[1].type.multiArrayType.shape[0])        self.assertEquals(len(spec.description.output), len(output_names) + 1)        self.assertEquals(output_names[0], spec.description.output[0].name)        self.assertEquals(32, spec.description.output[0].type.multiArrayType.shape[0])        self.assertEquals(32, spec.description.output[1].type.multiArrayType.shape[0])        # Test the layer parameters.        layers = spec.neuralNetwork.layers        layer_0 = layers[0]        self.assertIsNotNone(layer_0.simpleRecurrent)        self.assertEquals(len(layer_0.input), 2)        self.assertEquals(len(layer_0.output), 2) 
开发者ID:apple,项目名称:coremltools,代码行数:38,代码来源:test_keras2.py


示例12: test_Bidirectional_trainable

# 需要导入模块: from keras import layers [as 别名]# 或者: from keras.layers import SimpleRNN [as 别名]def test_Bidirectional_trainable():    # test layers that need learning_phase to be set    x = Input(shape=(3, 2))    layer = wrappers.Bidirectional(layers.SimpleRNN(3))    _ = layer(x)    assert len(layer.trainable_weights) == 6    layer.trainable = False    assert len(layer.trainable_weights) == 0    layer.trainable = True    assert len(layer.trainable_weights) == 6 
开发者ID:hello-sea,项目名称:DeepLearning_Wavelet-LSTM,代码行数:12,代码来源:wrappers_test.py


示例13: test_temporal_classification_functional

# 需要导入模块: from keras import layers [as 别名]# 或者: from keras.layers import SimpleRNN [as 别名]def test_temporal_classification_functional():    '''    Classify temporal sequences of float numbers    of length 3 into 2 classes using    single layer of GRU units and softmax applied    to the last activations of the units    '''    np.random.seed(1337)    (x_train, y_train), (x_test, y_test) = get_test_data(num_train=200,                                                         num_test=20,                                                         input_shape=(3, 4),                                                         classification=True,                                                         num_classes=2)    y_train = to_categorical(y_train)    y_test = to_categorical(y_test)    inputs = layers.Input(shape=(x_train.shape[1], x_train.shape[2]))    x = layers.SimpleRNN(8)(inputs)    outputs = layers.Dense(y_train.shape[-1], activation='softmax')(x)    model = keras.models.Model(inputs, outputs)    model.compile(loss='categorical_crossentropy',                  optimizer='rmsprop',                  metrics=['accuracy'])    history = model.fit(x_train, y_train, epochs=4, batch_size=10,                        validation_data=(x_test, y_test),                        verbose=0)    assert(history.history['acc'][-1] >= 0.8) 
开发者ID:hello-sea,项目名称:DeepLearning_Wavelet-LSTM,代码行数:29,代码来源:test_temporal_data_tasks.py


万事OK自学网:51自学网_软件自学网_CAD自学网自学excel、自学PS、自学CAD、自学C语言、自学css3实例,是一个通过网络自主学习工作技能的自学平台,网友喜欢的软件自学网站。