您当前的位置:首页 > IT编程 > Keras
| C语言 | Java | VB | VC | python | Android | TensorFlow | C++ | oracle | 学术与代码 | cnn卷积神经网络 | gnn | 图像修复 | Keras | 数据集 | Neo4j | 自然语言处理 | 深度学习 | 医学CAD | 医学影像 | 超参数 | pointnet | pytorch | 异常检测 | Transformers | 情感分类 | 知识图谱 |

自学教程:Python layers.UpSampling3D方法代码示例

51自学网 2020-12-01 11:09:11
  Keras
这篇教程Python layers.UpSampling3D方法代码示例写得很实用,希望能帮到您。

本文整理汇总了Python中keras.layers.UpSampling3D方法的典型用法代码示例。如果您正苦于以下问题:Python layers.UpSampling3D方法的具体用法?Python layers.UpSampling3D怎么用?Python layers.UpSampling3D使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在模块keras.layers的用法示例。

在下文中一共展示了layers.UpSampling3D方法的8个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于我们的系统推荐出更棒的Python代码示例。

示例1: test_keras_import

# 需要导入模块: from keras import layers [as 别名]# 或者: from keras.layers import UpSampling3D [as 别名]def test_keras_import(self):        # Upsample 1D        model = Sequential()        model.add(UpSampling1D(size=2, input_shape=(16, 1)))        model.build()        self.keras_param_test(model, 0, 2)        # Upsample 2D        model = Sequential()        model.add(UpSampling2D(size=(2, 2), input_shape=(16, 16, 1)))        model.build()        self.keras_param_test(model, 0, 3)        # Upsample 3D        model = Sequential()        model.add(UpSampling3D(size=(2, 2, 2), input_shape=(16, 16, 16, 1)))        model.build()        self.keras_param_test(model, 0, 4)# ********** Pooling Layers ********** 
开发者ID:Cloud-CV,项目名称:Fabrik,代码行数:21,代码来源:test_views.py


示例2: nn_architecture_seg_3d

# 需要导入模块: from keras import layers [as 别名]# 或者: from keras.layers import UpSampling3D [as 别名]def nn_architecture_seg_3d(input_shape, pool_size=(2, 2, 2), n_labels=1, initial_learning_rate=0.00001,                        depth=3, n_base_filters=16, metrics=dice_coefficient, batch_normalization=True):    inputs = Input(input_shape)    current_layer = inputs    levels = list()    for layer_depth in range(depth):        layer1 = create_convolution_block(input_layer=current_layer, n_filters=n_base_filters * (2**layer_depth),                                          batch_normalization=batch_normalization)        layer2 = create_convolution_block(input_layer=layer1, n_filters=n_base_filters * (2**layer_depth) * 2,                                          batch_normalization=batch_normalization)        if layer_depth < depth - 1:            current_layer = MaxPooling3D(pool_size=pool_size)(layer2)            levels.append([layer1, layer2, current_layer])        else:            current_layer = layer2            levels.append([layer1, layer2])    for layer_depth in range(depth - 2, -1, -1):        up_convolution = UpSampling3D(size=pool_size)        concat = concatenate([up_convolution, levels[layer_depth][1]], axis=1)        current_layer = create_convolution_block(n_filters=levels[layer_depth][1]._keras_shape[1],                                                 input_layer=concat, batch_normalization=batch_normalization)        current_layer = create_convolution_block(n_filters=levels[layer_depth][1]._keras_shape[1],                                                 input_layer=current_layer,                                                 batch_normalization=batch_normalization)    final_convolution = Conv3D(n_labels, (1, 1, 1))(current_layer)    act = Activation('sigmoid')(final_convolution)    model = Model(inputs=inputs, outputs=act)    if not isinstance(metrics, list):        metrics = [metrics]    model.compile(optimizer=Adam(lr=initial_learning_rate), loss=dice_coefficient_loss, metrics=metrics)    return model 
开发者ID:neuropoly,项目名称:spinalcordtoolbox,代码行数:38,代码来源:cnn_models_3d.py


示例3: model_simple_upsampling__reshape

# 需要导入模块: from keras import layers [as 别名]# 或者: from keras.layers import UpSampling3D [as 别名]def model_simple_upsampling__reshape(img_shape, class_n=None):    from keras.layers import Input, Dense, Convolution3D, MaxPooling3D, UpSampling3D, Reshape, Flatten    from keras.models import Sequential, Model    from keras.layers.core import Activation    from aitom.classify.deep.unsupervised.autoencoder.seg_util import conv_block    NUM_CHANNELS=1    input_shape = (None, img_shape[0], img_shape[1], img_shape[2], NUM_CHANNELS)    # use relu activation for hidden layer to guarantee non-negative outputs are passed to the max pooling layer. In such case, as long as the output layer is linear activation, the network can still accomodate negative image intendities, just matter of shift back using the bias term    input_img = Input(shape=input_shape[1:])    x = input_img    x = conv_block(x, 32, 3, 3, 3)    x = MaxPooling3D((2, 2, 2), border_mode='same')(x)    x = conv_block(x, 32, 3, 3, 3)    x = MaxPooling3D((2, 2, 2), border_mode='same')(x)    x = conv_block(x, 32, 3, 3, 3)    x = UpSampling3D((2, 2, 2))(x)    x = conv_block(x, 32, 3, 3, 3)    x = UpSampling3D((2, 2, 2))(x)    x = conv_block(x, 32, 3, 3, 3)    x = Convolution3D(class_n, 1, 1, 1, border_mode='same')(x)    x = Reshape((N.prod(img_shape), class_n))(x)    x = Activation('softmax')(x)    model = Model(input=input_img, output=x)    print('model layers:')    for l in model.layers:    print (l.output_shape, l.name)    return model 
开发者ID:xulabs,项目名称:aitom,代码行数:39,代码来源:seg_src.py


示例4: create_up_sampling_module

# 需要导入模块: from keras import layers [as 别名]# 或者: from keras.layers import UpSampling3D [as 别名]def create_up_sampling_module(input_layer, n_filters, size=(2, 2, 2)):    up_sample = UpSampling3D(size=size)(input_layer)    convolution = create_convolution_block(up_sample, n_filters)    return convolution 
开发者ID:ellisdg,项目名称:3DUnetCNN,代码行数:6,代码来源:isensee2017.py


示例5: get_up_convolution

# 需要导入模块: from keras import layers [as 别名]# 或者: from keras.layers import UpSampling3D [as 别名]def get_up_convolution(n_filters, pool_size, kernel_size=(2, 2, 2), strides=(2, 2, 2),                       deconvolution=False):    if deconvolution:        return Deconvolution3D(filters=n_filters, kernel_size=kernel_size,                               strides=strides)    else:        return UpSampling3D(size=pool_size) 
开发者ID:ellisdg,项目名称:3DUnetCNN,代码行数:9,代码来源:unet.py


示例6: test_keras_export

# 需要导入模块: from keras import layers [as 别名]# 或者: from keras.layers import UpSampling3D [as 别名]def test_keras_export(self):        tests = open(os.path.join(settings.BASE_DIR, 'tests', 'unit', 'keras_app',                                  'keras_export_test.json'), 'r')        response = json.load(tests)        tests.close()        net = yaml.safe_load(json.dumps(response['net']))        net = {'l0': net['Input'], 'l1': net['Input2'], 'l2': net['Input4'], 'l3': net['Upsample']}        # Conv 1D        net['l1']['connection']['output'].append('l3')        net['l3']['connection']['input'] = ['l1']        net['l3']['params']['layer_type'] = '1D'        inp = data(net['l1'], '', 'l1')['l1']        temp = upsample(net['l3'], [inp], 'l3')        model = Model(inp, temp['l3'])        self.assertEqual(model.layers[1].__class__.__name__, 'UpSampling1D')        # Conv 2D        net['l0']['connection']['output'].append('l0')        net['l3']['connection']['input'] = ['l0']        net['l3']['params']['layer_type'] = '2D'        inp = data(net['l0'], '', 'l0')['l0']        temp = upsample(net['l3'], [inp], 'l3')        model = Model(inp, temp['l3'])        self.assertEqual(model.layers[1].__class__.__name__, 'UpSampling2D')        # Conv 3D        net['l2']['connection']['output'].append('l3')        net['l3']['connection']['input'] = ['l2']        net['l3']['params']['layer_type'] = '3D'        inp = data(net['l2'], '', 'l2')['l2']        temp = upsample(net['l3'], [inp], 'l3')        model = Model(inp, temp['l3'])        self.assertEqual(model.layers[1].__class__.__name__, 'UpSampling3D') 
开发者ID:Cloud-CV,项目名称:Fabrik,代码行数:33,代码来源:test_views.py


示例7: auto_classifier_model

# 需要导入模块: from keras import layers [as 别名]# 或者: from keras.layers import UpSampling3D [as 别名]def auto_classifier_model(img_shape, encoding_dim=128, NUM_CHANNELS=1, num_of_class=2):    input_shape = (None, img_shape[0], img_shape[1], img_shape[2], NUM_CHANNELS)    mask_shape = (None, num_of_class)    # use relu activation for hidden layer to guarantee non-negative outputs are passed to the max pooling layer. In such case, as long as the output layer is linear activation, the network can still accomodate negative image intendities, just matter of shift back using the bias term    input_img = Input(shape=input_shape[1:])    mask = Input(shape=mask_shape[1:])    x = input_img    x = conv_block(x, 32, 3, 3, 3)    x = MaxPooling3D((2, 2, 2), padding ='same')(x)    x = conv_block(x, 32, 3, 3, 3)    x = MaxPooling3D((2, 2, 2), padding ='same')(x)    encoder_conv_shape = [_.value for _ in  x.get_shape()]          # x.get_shape() returns a list of tensorflow.python.framework.tensor_shape.Dimension objects    x = Flatten()(x)    encoded = Dense(encoding_dim, activation='relu', activity_regularizer=regularizers.l1(10e-5))(x)    encoder = Model(inputs=input_img, outputs=encoded)    x = BatchNormalization()(x)    x = Dense(encoding_dim, activation='relu', activity_regularizer=regularizers.l1(10e-5))(x)    x = Dense(128, activation = 'relu')(x)    x = Dense(num_of_class, activation = 'softmax')(x)        prob = x    # classifier output    classifier = Model(inputs=input_img, outputs=prob)    input_img_decoder = Input(shape=encoder.output_shape[1:])    x = input_img_decoder    x = Dense(np.prod(encoder_conv_shape[1:]), activation='relu')(x)    x = Reshape(encoder_conv_shape[1:])(x)    x = UpSampling3D((2, 2, 2))(x)    x = conv_block(x, 32, 3, 3, 3)    x = UpSampling3D((2, 2, 2))(x)    x = conv_block(x, 32, 3, 3, 3)    x = Convolution3D(1, (3, 3, 3), activation='linear', padding ='same')(x)    decoded = x    # autoencoder output    decoder = Model(inputs=input_img_decoder, outputs=decoded)        autoencoder = Sequential()    for l in encoder.layers:            autoencoder.add(l)    last = None    for l in decoder.layers:        last = l            autoencoder.add(l)    decoded = autoencoder(input_img)    auto_classifier = Model(inputs=input_img, outputs=[decoded, prob])    auto_classifier.summary()    return auto_classifier 
开发者ID:xulabs,项目名称:aitom,代码行数:63,代码来源:auto_classifier_model.py


示例8: _build

# 需要导入模块: from keras import layers [as 别名]# 或者: from keras.layers import UpSampling3D [as 别名]def _build(self):        # get parameters        proj = self.proj_params        proj_axis = axes_dict(self.config.axes)[proj.axis]        # define surface projection network (3D -> 2D)        inp = u = Input(self.config.unet_input_shape)        def conv_layers(u):            for _ in range(proj.n_conv_per_depth):                u = Conv3D(proj.n_filt, proj.kern, padding='same', activation='relu')(u)            return u        # down        for _ in range(proj.n_depth):            u = conv_layers(u)            u = MaxPooling3D(proj.pool)(u)        # middle        u = conv_layers(u)        # up        for _ in range(proj.n_depth):            u = UpSampling3D(proj.pool)(u)            u = conv_layers(u)        u = Conv3D(1, proj.kern, padding='same', activation='linear')(u)        # convert learned features along Z to surface probabilities        # (add 1 to proj_axis because of batch dimension in tensorflow)        u = Lambda(lambda x: softmax(x, axis=1+proj_axis))(u)        # multiply Z probabilities with Z values in input stack        u = Multiply()([inp, u])        # perform surface projection by summing over weighted Z values        u = Lambda(lambda x: K.sum(x, axis=1+proj_axis))(u)        model_projection = Model(inp, u)        # define denoising network (2D -> 2D)        # (remove projected axis from input_shape)        input_shape = list(self.config.unet_input_shape)        del input_shape[proj_axis]        model_denoising = nets.common_unet(            n_dim           = self.config.n_dim-1,            n_channel_out   = self.config.n_channel_out,            prob_out        = self.config.probabilistic,            residual        = self.config.unet_residual,            n_depth         = self.config.unet_n_depth,            kern_size       = self.config.unet_kern_size,            n_first         = self.config.unet_n_first,            last_activation = self.config.unet_last_activation,        )(tuple(input_shape))        # chain models together        return Model(inp, model_denoising(model_projection(inp))) 
开发者ID:CSBDeep,项目名称:CSBDeep,代码行数:50,代码来源:care_projection.py


万事OK自学网:51自学网_软件自学网_CAD自学网自学excel、自学PS、自学CAD、自学C语言、自学css3实例,是一个通过网络自主学习工作技能的自学平台,网友喜欢的软件自学网站。