这篇教程Python layers.SpatialDropout2D方法代码示例写得很实用,希望能帮到您。
本文整理汇总了Python中keras.layers.SpatialDropout2D方法的典型用法代码示例。如果您正苦于以下问题:Python layers.SpatialDropout2D方法的具体用法?Python layers.SpatialDropout2D怎么用?Python layers.SpatialDropout2D使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在模块keras.layers 的用法示例。 在下文中一共展示了layers.SpatialDropout2D方法的6个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于我们的系统推荐出更棒的Python代码示例。 示例1: keras_dropout# 需要导入模块: from keras import layers [as 别名]# 或者: from keras.layers import SpatialDropout2D [as 别名]def keras_dropout(layer, rate): """ Keras dropout layer. """ from keras import layers input_dim = len(layer.input.shape) if input_dim == 2: return layers.SpatialDropout1D(rate) elif input_dim == 3: return layers.SpatialDropout2D(rate) elif input_dim == 4: return layers.SpatialDropout3D(rate) else: return layers.Dropout(rate)
开发者ID:microsoft,项目名称:nni,代码行数:18,代码来源:layers.py
示例2: test_dropout# 需要导入模块: from keras import layers [as 别名]# 或者: from keras.layers import SpatialDropout2D [as 别名]def test_dropout(): layer_test(layers.Dropout, kwargs={'rate': 0.5}, input_shape=(3, 2)) layer_test(layers.Dropout, kwargs={'rate': 0.5, 'noise_shape': [3, 1]}, input_shape=(3, 2)) layer_test(layers.Dropout, kwargs={'rate': 0.5, 'noise_shape': [None, 1]}, input_shape=(3, 2)) layer_test(layers.SpatialDropout1D, kwargs={'rate': 0.5}, input_shape=(2, 3, 4)) for data_format in ['channels_last', 'channels_first']: for shape in [(4, 5), (4, 5, 6)]: if data_format == 'channels_last': input_shape = (2,) + shape + (3,) else: input_shape = (2, 3) + shape layer_test(layers.SpatialDropout2D if len(shape) == 2 else layers.SpatialDropout3D, kwargs={'rate': 0.5, 'data_format': data_format}, input_shape=input_shape) # Test invalid use cases with pytest.raises(ValueError): layer_test(layers.SpatialDropout2D if len(shape) == 2 else layers.SpatialDropout3D, kwargs={'rate': 0.5, 'data_format': 'channels_middle'}, input_shape=input_shape)
开发者ID:hello-sea,项目名称:DeepLearning_Wavelet-LSTM,代码行数:36,代码来源:core_test.py
示例3: build_psp# 需要导入模块: from keras import layers [as 别名]# 或者: from keras.layers import SpatialDropout2D [as 别名]def build_psp(backbone, psp_layer, last_upsampling_factor, classes=21, activation='softmax', conv_filters=512, pooling_type='avg', dropout=None, final_interpolation='bilinear', use_batchnorm=True): input = backbone.input x = extract_outputs(backbone, [psp_layer])[0] x = PyramidPoolingModule( conv_filters=conv_filters, pooling_type=pooling_type, use_batchnorm=use_batchnorm)(x) x = Conv2DBlock(512, (1, 1), activation='relu', padding='same', use_batchnorm=use_batchnorm)(x) if dropout is not None: x = SpatialDropout2D(dropout)(x) x = Conv2D(classes, (3,3), padding='same', name='final_conv')(x) if final_interpolation == 'bilinear': x = ResizeImage(to_tuple(last_upsampling_factor))(x) elif final_interpolation == 'duc': x = DUC(to_tuple(last_upsampling_factor))(x) else: raise ValueError('Unsupported interpolation type {}. '.format(final_interpolation) + 'Use `duc` or `bilinear`.') x = Activation(activation, name=activation)(x) model = Model(input, x) return model
开发者ID:SpaceNetChallenge,项目名称:SpaceNet_Off_Nadir_Solutions,代码行数:43,代码来源:builder.py
示例4: decoder_a# 需要导入模块: from keras import layers [as 别名]# 或者: from keras.layers import SpatialDropout2D [as 别名]def decoder_a(self): """ Decoder for side A """ kwargs = dict(kernel_size=5, kernel_initializer=self.kernel_initializer) decoder_complexity = 320 if self.lowmem else self.config["complexity_decoder_a"] dense_dim = 384 if self.lowmem else 512 decoder_shape = self.input_shape[0] // 16 input_ = Input(shape=(decoder_shape, decoder_shape, dense_dim)) var_x = input_ var_x = self.blocks.upscale(var_x, decoder_complexity, **kwargs) var_x = SpatialDropout2D(0.25)(var_x) var_x = self.blocks.upscale(var_x, decoder_complexity, **kwargs) if self.lowmem: var_x = SpatialDropout2D(0.15)(var_x) else: var_x = SpatialDropout2D(0.25)(var_x) var_x = self.blocks.upscale(var_x, decoder_complexity // 2, **kwargs) var_x = self.blocks.upscale(var_x, decoder_complexity // 4, **kwargs) var_x = self.blocks.conv2d(var_x, 3, kernel_size=5, padding="same", activation="sigmoid", name="face_out") outputs = [var_x] if self.config.get("learn_mask", False): var_y = input_ var_y = self.blocks.upscale(var_y, decoder_complexity) var_y = self.blocks.upscale(var_y, decoder_complexity) var_y = self.blocks.upscale(var_y, decoder_complexity // 2) var_y = self.blocks.upscale(var_y, decoder_complexity // 4) var_y = self.blocks.conv2d(var_y, 1, kernel_size=5, padding="same", activation="sigmoid", name="mask_out") outputs.append(var_y) return KerasModel(input_, outputs=outputs)
示例5: build_shallow_weight# 需要导入模块: from keras import layers [as 别名]# 或者: from keras.layers import SpatialDropout2D [as 别名]def build_shallow_weight(channels, width, height, output_size, nb_classes): # input inputs = Input(shape=(channels, height, width)) # 1 conv conv1_1 = Convolution2D(8, 3, 3, border_mode='same', activation='relu', W_regularizer=l2(0.01))(inputs) bn1 = BatchNormalization(mode=0, axis=1)(conv1_1) pool1 = MaxPooling2D(pool_size=(2,2), strides=(2,2))(bn1) gn1 = GaussianNoise(0.5)(pool1) drop1 = SpatialDropout2D(0.5)(gn1) # 2 conv conv2_1 = Convolution2D(8, 3, 3, border_mode='same', activation='relu', W_regularizer=l2(0.01))(gn1) bn2 = BatchNormalization(mode=0, axis=1)(conv2_1) pool2 = MaxPooling2D(pool_size=(2,2), strides=(2,2))(bn2) gn2 = GaussianNoise(0.5)(pool2) drop2 = SpatialDropout2D(0.5)(gn2) # 3 conv conv3_1 = Convolution2D(8, 3, 3, border_mode='same', activation='relu', W_regularizer=l2(0.01))(drop2) bn3 = BatchNormalization(mode=0, axis=1)(conv3_1) pool3 = MaxPooling2D(pool_size=(2,2), strides=(2,2))(bn3) gn3 = GaussianNoise(0.5)(pool3) drop3 = SpatialDropout2D(0.5)(gn3) # 4 conv conv4_1 = Convolution2D(8, 3, 3, border_mode='same', activation='relu', W_regularizer=l2(0.01))(gn3) bn4 = BatchNormalization(mode=0, axis=1)(conv4_1) pool4 = MaxPooling2D(pool_size=(2,2), strides=(2,2))(bn4) gn4 = GaussianNoise(0.5)(pool4) drop4 = SpatialDropout2D(0.5)(gn4) # flaten flat = Flatten()(gn4) # 1 dense dense1 = Dense(8, activation='relu', W_regularizer=l2(0.1))(flat) bn6 = BatchNormalization(mode=0, axis=1)(dense1) drop6 = Dropout(0.5)(bn6) # output out = [] for i in range(output_size): out.append(Dense(nb_classes, activation='softmax')(bn6)) if output_size > 1: merged_out = merge(out, mode='concat') shaped_out = Reshape((output_size, nb_classes))(merged_out) sample_weight_mode = 'temporal' else: shaped_out = out sample_weight_mode = None model = Model(input=[inputs], output=shaped_out) model.summary() model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=[categorical_accuracy_per_sequence], sample_weight_mode = sample_weight_mode ) return model
示例6: unet_model1# 需要导入模块: from keras import layers [as 别名]# 或者: from keras.layers import SpatialDropout2D [as 别名]def unet_model1(): inputs = Input((1, 512, 512)) conv1 = Convolution2D(width, 3, 3, activation='relu', border_mode='same')(inputs) conv1 = BatchNormalization(axis = 1)(conv1) conv1 = Convolution2D(width, 3, 3, activation='relu', border_mode='same')(conv1) pool1 = MaxPooling2D(pool_size=(2, 2))(conv1) conv2 = Convolution2D(width*2, 3, 3, activation='relu', border_mode='same')(pool1) conv2 = BatchNormalization(axis = 1)(conv2) conv2 = Convolution2D(width*2, 3, 3, activation='relu', border_mode='same')(conv2) pool2 = MaxPooling2D(pool_size=(2, 2))(conv2) conv3 = Convolution2D(width*4, 3, 3, activation='relu', border_mode='same')(pool2) conv3 = BatchNormalization(axis = 1)(conv3) conv3 = Convolution2D(width*4, 3, 3, activation='relu', border_mode='same')(conv3) pool3 = MaxPooling2D(pool_size=(2, 2))(conv3) conv4 = Convolution2D(width*8, 3, 3, activation='relu', border_mode='same')(pool3) conv4 = BatchNormalization(axis = 1)(conv4) conv4 = Convolution2D(width*8, 3, 3, activation='relu', border_mode='same')(conv4) pool4 = MaxPooling2D(pool_size=(2, 2))(conv4) conv5 = Convolution2D(width*16, 3, 3, activation='relu', border_mode='same')(pool4) conv5 = BatchNormalization(axis = 1)(conv5) conv5 = Convolution2D(width*16, 3, 3, activation='relu', border_mode='same')(conv5) up6 = merge([UpSampling2D(size=(2, 2))(conv5), conv4], mode='concat', concat_axis=1) conv6 = SpatialDropout2D(dropout_rate)(up6) conv6 = Convolution2D(width*8, 3, 3, activation='relu', border_mode='same')(conv6) conv6 = Convolution2D(width*8, 3, 3, activation='relu', border_mode='same')(conv6) up7 = merge([UpSampling2D(size=(2, 2))(conv6), conv3], mode='concat', concat_axis=1) conv7 = SpatialDropout2D(dropout_rate)(up7) conv7 = Convolution2D(width*4, 3, 3, activation='relu', border_mode='same')(conv7) conv7 = Convolution2D(width*4, 3, 3, activation='relu', border_mode='same')(conv7) up8 = merge([UpSampling2D(size=(2, 2))(conv7), conv2], mode='concat', concat_axis=1) conv8 = SpatialDropout2D(dropout_rate)(up8) conv8 = Convolution2D(width*2, 3, 3, activation='relu', border_mode='same')(conv8) conv8 = Convolution2D(width*2, 3, 3, activation='relu', border_mode='same')(conv8) up9 = merge([UpSampling2D(size=(2, 2))(conv8), conv1], mode='concat', concat_axis=1) conv9 = SpatialDropout2D(dropout_rate)(up9) conv9 = Convolution2D(width, 3, 3, activation='relu', border_mode='same')(conv9) conv9 = Convolution2D(width, 3, 3, activation='relu', border_mode='same')(conv9) conv10 = Convolution2D(1, 1, 1, activation='sigmoid')(conv9) model = Model(input=inputs, output=conv10) model.compile(optimizer=Adam(lr=1e-5), loss=dice_coef_loss, metrics=[dice_coef]) return model
|