这篇教程Python layers.Subtract方法代码示例写得很实用,希望能帮到您。
本文整理汇总了Python中keras.layers.Subtract方法的典型用法代码示例。如果您正苦于以下问题:Python layers.Subtract方法的具体用法?Python layers.Subtract怎么用?Python layers.Subtract使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在模块keras.layers 的用法示例。 在下文中一共展示了layers.Subtract方法的6个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于我们的系统推荐出更棒的Python代码示例。 示例1: _build_model# 需要导入模块: from keras import layers [as 别名]# 或者: from keras.layers import Subtract [as 别名]def _build_model(input_shape, hidden_layer_sizes, activation): """ Build Keras Ranker NN model (Ranknet / LambdaRank NN). """ # Neural network structure hidden_layers = [] for i in range(len(hidden_layer_sizes)): hidden_layers.append(Dense(hidden_layer_sizes[i], activation=activation[i], name=str(activation[i]) + '_layer' + str(i))) h0 = Dense(1, activation='linear', name='Identity_layer') input1 = Input(shape=(input_shape,), name='Input_layer1') input2 = Input(shape=(input_shape,), name='Input_layer2') x1 = input1 x2 = input2 for i in range(len(hidden_layer_sizes)): x1 = hidden_layers[i](x1) x2 = hidden_layers[i](x2) x1 = h0(x1) x2 = h0(x2) # Subtract layer subtracted = Subtract(name='Subtract_layer')([x1, x2]) # sigmoid out = Activation('sigmoid', name='Activation_layer')(subtracted) # build model model = Model(inputs=[input1, input2], outputs=out) return model
开发者ID:liyinxiao,项目名称:LambdaRankNN,代码行数:27,代码来源:__init__.py
示例2: DnCNN# 需要导入模块: from keras import layers [as 别名]# 或者: from keras.layers import Subtract [as 别名]def DnCNN(): inpt = Input(shape=(None,None,1)) # 1st layer, Conv+relu x = Conv2D(filters=64, kernel_size=(3,3), strides=(1,1), padding='same')(inpt) x = Activation('relu')(x) # 15 layers, Conv+BN+relu for i in range(15): x = Conv2D(filters=64, kernel_size=(3,3), strides=(1,1), padding='same')(x) x = BatchNormalization(axis=-1, epsilon=1e-3)(x) x = Activation('relu')(x) # last layer, Conv x = Conv2D(filters=1, kernel_size=(3,3), strides=(1,1), padding='same')(x) x = Subtract()([inpt, x]) # input - noise model = Model(inputs=inpt, outputs=x) return model
开发者ID:husqin,项目名称:DnCNN-keras,代码行数:19,代码来源:models.py
示例3: test_merge_subtract# 需要导入模块: from keras import layers [as 别名]# 或者: from keras.layers import Subtract [as 别名]def test_merge_subtract(): i1 = layers.Input(shape=(4, 5)) i2 = layers.Input(shape=(4, 5)) i3 = layers.Input(shape=(4, 5)) i4 = layers.Input(shape=(3, 5)) o = layers.subtract([i1, i2]) assert o._keras_shape == (None, 4, 5) model = models.Model([i1, i2], o) subtract_layer = layers.Subtract() o2 = subtract_layer([i1, i2]) assert subtract_layer.output_shape == (None, 4, 5) x1 = np.random.random((2, 4, 5)) x2 = np.random.random((2, 4, 5)) out = model.predict([x1, x2]) assert out.shape == (2, 4, 5) assert_allclose(out, x1 - x2, atol=1e-4) assert subtract_layer.compute_mask([i1, i2], [None, None]) is None assert np.all(K.eval(subtract_layer.compute_mask( [i1, i2], [K.variable(x1), K.variable(x2)]))) # Test invalid use case with pytest.raises(ValueError): subtract_layer.compute_mask([i1, i2], x1) with pytest.raises(ValueError): subtract_layer.compute_mask(i1, [None, None]) with pytest.raises(ValueError): subtract_layer([i1, i2, i3]) with pytest.raises(ValueError): subtract_layer([i1])
开发者ID:hello-sea,项目名称:DeepLearning_Wavelet-LSTM,代码行数:34,代码来源:merge_test.py
示例4: baseline_model# 需要导入模块: from keras import layers [as 别名]# 或者: from keras.layers import Subtract [as 别名]def baseline_model(): input_1 = Input(shape=(224, 224, 3)) input_2 = Input(shape=(224, 224, 3)) base_model = VGGFace(model='resnet50', include_top=False) for x in base_model.layers[:-3]: x.trainable = True x1 = base_model(input_1) x2 = base_model(input_2) # x1_ = Reshape(target_shape=(7*7, 2048))(x1) # x2_ = Reshape(target_shape=(7*7, 2048))(x2) # # x_dot = Dot(axes=[2, 2], normalize=True)([x1_, x2_]) # x_dot = Flatten()(x_dot) x1 = Concatenate(axis=-1)([GlobalMaxPool2D()(x1), GlobalAvgPool2D()(x1)]) x2 = Concatenate(axis=-1)([GlobalMaxPool2D()(x2), GlobalAvgPool2D()(x2)]) x3 = Subtract()([x1, x2]) x3 = Multiply()([x3, x3]) x = Multiply()([x1, x2]) x = Concatenate(axis=-1)([x, x3]) x = Dense(100, activation="relu")(x) x = Dropout(0.01)(x) out = Dense(1, activation="sigmoid")(x) model = Model([input_1, input_2], out) model.compile(loss="binary_crossentropy", metrics=['acc'], optimizer=Adam(0.00001)) model.summary() return model
开发者ID:CVxTz,项目名称:kinship_prediction,代码行数:41,代码来源:vgg_face.py
示例5: baseline_model# 需要导入模块: from keras import layers [as 别名]# 或者: from keras.layers import Subtract [as 别名]def baseline_model(): input_1 = Input(shape=(224, 224, 3)) input_2 = Input(shape=(224, 224, 3)) base_model = ResNet50(weights='imagenet', include_top=False) for x in base_model.layers[:-3]: x.trainable = True x1 = base_model(input_1) x2 = base_model(input_2) # x1_ = Reshape(target_shape=(7*7, 2048))(x1) # x2_ = Reshape(target_shape=(7*7, 2048))(x2) # # x_dot = Dot(axes=[2, 2], normalize=True)([x1_, x2_]) # x_dot = Flatten()(x_dot) x1 = Concatenate(axis=-1)([GlobalMaxPool2D()(x1), GlobalAvgPool2D()(x1)]) x2 = Concatenate(axis=-1)([GlobalMaxPool2D()(x2), GlobalAvgPool2D()(x2)]) x3 = Subtract()([x1, x2]) x3 = Multiply()([x3, x3]) x = Multiply()([x1, x2]) x = Concatenate(axis=-1)([x, x3]) x = Dense(100, activation="relu")(x) x = Dropout(0.01)(x) out = Dense(1, activation="sigmoid")(x) model = Model([input_1, input_2], out) model.compile(loss="binary_crossentropy", metrics=['acc'], optimizer=Adam(0.00001)) model.summary() return model
开发者ID:CVxTz,项目名称:kinship_prediction,代码行数:41,代码来源:baseline.py
示例6: get_Discriminator# 需要导入模块: from keras import layers [as 别名]# 或者: from keras.layers import Subtract [as 别名]def get_Discriminator(input_shape_1, input_shape_2, Encoder): dis_inputs_1 = Input(shape=input_shape_1) # Image dis_inputs_2 = Input(shape=input_shape_2) # Segmentation mul_1 = Multiply()([dis_inputs_1, dis_inputs_2]) # Getting segmented part encoder_output_1 = Encoder(dis_inputs_1) encoder_output_2 = Encoder(mul_1) subtract_dis = Subtract()([encoder_output_1, encoder_output_2]) dis_conv_block = Conv3D(128, (3, 3, 3), strides=(1, 1, 1), padding='same')(subtract_dis) dis_conv_block = Activation('relu')(dis_conv_block) dis_conv_block = Conv3D(128, (3, 3, 3), strides=(1, 1, 1), padding='same')(dis_conv_block) dis_conv_block = Activation('relu')(dis_conv_block) dis_conv_block = MaxPooling3D(pool_size=(2, 2, 2), strides=(2, 2, 2))(dis_conv_block) dis_conv_block = Conv3D(64, (3, 3, 3), strides=(1, 1, 1), padding='same')(dis_conv_block) dis_conv_block = Activation('relu')(dis_conv_block) dis_conv_block = Conv3D(64, (3, 3, 3), strides=(1, 1, 1), padding='same')(dis_conv_block) dis_conv_block = Activation('relu')(dis_conv_block) dis_conv_block = Conv3D(32, (3, 3, 3), strides=(1, 1, 1), padding='same')(dis_conv_block) dis_conv_block = Activation('relu')(dis_conv_block) dis_conv_block = Conv3D(32, (3, 3, 3), strides=(1, 1, 1), padding='same')(dis_conv_block) dis_conv_block = Activation('relu')(dis_conv_block) flat_1 = Flatten()(dis_conv_block) dis_fc_1 = Dense(256)(flat_1) dis_fc_1 = Activation('relu')(dis_fc_1) dis_drp_1 = Dropout(0.5)(dis_fc_1) dis_fc_2 = Dense(128)(dis_drp_1) dis_fc_2 = Activation('relu')(dis_fc_2) dis_drp_2 = Dropout(0.5)(dis_fc_2) dis_fc_3 = Dense(1)(dis_drp_2) dis_similarity_output = Activation('sigmoid')(dis_fc_3) Discriminator = Model(inputs=[dis_inputs_1, dis_inputs_2], outputs=dis_similarity_output) Discriminator.compile(optimizer=Adadelta(lr=0.01), loss='binary_crossentropy', metrics=['accuracy']) print('Discriminator Architecture:') print(Discriminator.summary()) return Discriminator
开发者ID:ardamavi,项目名称:3D-Medical-Segmentation-GAN,代码行数:52,代码来源:get_models.py
|