这篇教程Python layers.GaussianNoise方法代码示例写得很实用,希望能帮到您。
本文整理汇总了Python中keras.layers.GaussianNoise方法的典型用法代码示例。如果您正苦于以下问题:Python layers.GaussianNoise方法的具体用法?Python layers.GaussianNoise怎么用?Python layers.GaussianNoise使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在模块keras.layers 的用法示例。 在下文中一共展示了layers.GaussianNoise方法的14个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于我们的系统推荐出更棒的Python代码示例。 示例1: discriminator_network# 需要导入模块: from keras import layers [as 别名]# 或者: from keras.layers import GaussianNoise [as 别名]def discriminator_network(x): def add_common_layers(y): y = layers.advanced_activations.LeakyReLU()(y) y = layers.Dropout(0.25)(y) return y x = layers.GaussianNoise(stddev=0.2)(x) x = layers.Conv2D(64, kernel_size, **conv_layer_keyword_args)(x) x = add_common_layers(x) x = layers.Conv2D(128, kernel_size, **conv_layer_keyword_args)(x) x = add_common_layers(x) x = layers.Flatten()(x) x = layers.Dense(1024)(x) x = add_common_layers(x) return layers.Dense(1, activation='sigmoid')(x)
开发者ID:mjdietzx,项目名称:GAN-Sandbox,代码行数:22,代码来源:gan.py
示例2: create_network# 需要导入模块: from keras import layers [as 别名]# 或者: from keras.layers import GaussianNoise [as 别名]def create_network(nb_features, nb_labels, padding_value): # Define the network architecture input_data = Input(name='input', shape=(None, nb_features)) # nb_features = image height masking = Masking(mask_value=padding_value)(input_data) noise = GaussianNoise(0.01)(masking) blstm = Bidirectional(LSTM(128, return_sequences=True, dropout=0.1))(noise) blstm = Bidirectional(LSTM(128, return_sequences=True, dropout=0.1))(blstm) blstm = Bidirectional(LSTM(128, return_sequences=True, dropout=0.1))(blstm) dense = TimeDistributed(Dense(nb_labels + 1, name="dense"))(blstm) outrnn = Activation('softmax', name='softmax')(dense) network = CTCModel([input_data], [outrnn]) network.compile(Adam(lr=0.0001)) return network
开发者ID:ysoullard,项目名称:CTCModel,代码行数:20,代码来源:example.py
示例3: graves2006# 需要导入模块: from keras import layers [as 别名]# 或者: from keras.layers import GaussianNoise [as 别名]def graves2006(num_features=26, num_hiddens=100, num_classes=28, std=.6): """ Implementation of Graves' model Reference: [1] Graves, Alex, et al. "Connectionist temporal classification: labelling unsegmented sequence data with recurrent neural networks." Proceedings of the 23rd international conference on Machine learning. ACM, 2006. """ x = Input(name='inputs', shape=(None, num_features)) o = x o = GaussianNoise(std)(o) o = Bidirectional(LSTM(num_hiddens, return_sequences=True, consume_less='gpu'))(o) o = TimeDistributed(Dense(num_classes))(o) return ctc_model(x, o)
开发者ID:igormq,项目名称:asr-study,代码行数:21,代码来源:models.py
示例4: CNN# 需要导入模块: from keras import layers [as 别名]# 或者: from keras.layers import GaussianNoise [as 别名]def CNN(input_shape=None, classes=1000): inputs = Input(shape=input_shape) # Block 1 x = GaussianNoise(0.3)(inputs) x = CBRD(x, 64) x = CBRD(x, 64) x = MaxPooling2D()(x) # Block 2 x = CBRD(x, 128) x = CBRD(x, 128) x = MaxPooling2D()(x) # Block 3 x = CBRD(x, 256) x = CBRD(x, 256) x = CBRD(x, 256) x = MaxPooling2D()(x) # Classification block x = Flatten(name='flatten')(x) x = DBRD(x, 4096) x = DBRD(x, 4096) x = Dense(classes, activation='softmax', name='predictions')(x) model = Model(inputs=inputs, outputs=x) return model
开发者ID:OsciiArt,项目名称:DeepAA,代码行数:31,代码来源:train.py
示例5: graves# 需要导入模块: from keras import layers [as 别名]# 或者: from keras.layers import GaussianNoise [as 别名]def graves(input_dim=26, rnn_size=512, output_dim=29, std=0.6): """ Implementation of Graves 2006 model Architecture: Gaussian Noise on input BiDirectional LSTM Reference: ftp://ftp.idsia.ch/pub/juergen/icml2006.pdf """ K.set_learning_phase(1) input_data = Input(name='the_input', shape=(None, input_dim)) # x = BatchNormalization(axis=-1)(input_data) x = GaussianNoise(std)(input_data) x = Bidirectional(LSTM(rnn_size, return_sequences=True, implementation=0))(x) y_pred = TimeDistributed(Dense(output_dim, activation='softmax'))(x) # Input of labels and other CTC requirements labels = Input(name='the_labels', shape=[None,], dtype='int32') input_length = Input(name='input_length', shape=[1], dtype='int32') label_length = Input(name='label_length', shape=[1], dtype='int32') # Keras doesn't currently support loss funcs with extra parameters # so CTC loss is implemented in a lambda layer loss_out = Lambda(ctc_lambda_func, output_shape=(1,), name='ctc')([y_pred, labels, input_length, label_length]) model = Model(inputs=[input_data, labels, input_length, label_length], outputs=[loss_out]) return model
开发者ID:robmsmt,项目名称:KerasDeepSpeech,代码行数:39,代码来源:model.py
示例6: supervised_train# 需要导入模块: from keras import layers [as 别名]# 或者: from keras.layers import GaussianNoise [as 别名]def supervised_train(task_name,sed_model_name,augmentation): """" Training with only weakly-supervised learning Args: task_name: string the name of the task sed_model_name: string the name of the model augmentation: bool whether to add Gaussian noise Layer Return: """ LOG.info('config preparation for %s'%sed_model_name) #prepare for training train_sed=trainer.trainer(task_name,sed_model_name,False) #creat model using the model structure prepared in [train_sed] creat_model_sed=train_sed.model_struct.graph() LEN=train_sed.data_loader.LEN DIM=train_sed.data_loader.DIM inputs=Input((LEN,DIM)) #add Gaussian noise Layer if augmentation: inputs_t=GaussianNoise(0.15)(inputs) else: inputs_t=inputs outs=creat_model_sed(inputs_t,False) #the model used for training models=Model(inputs,outs) LOG.info('------------start training------------') train_sed.train(extra_model=models,train_mode='supervised') #predict results for validation set and test set train_sed.save_at_result() #audio tagging result train_sed.save_sed_result() #event detection result
开发者ID:Kikyo-16,项目名称:Sound_event_detection,代码行数:41,代码来源:main.py
示例7: modelSharedEncoder# 需要导入模块: from keras import layers [as 别名]# 或者: from keras.layers import GaussianNoise [as 别名]def modelSharedEncoder(self, name): input = Input(shape=self.latent_dim) x = self.resblk(input, 256) z = GaussianNoise(stddev=1)(x, training=True) return Model(inputs=input, outputs=z, name=name)
开发者ID:simontomaskarlsson,项目名称:GAN-MRI,代码行数:9,代码来源:UNIT.py
示例8: _build_model# 需要导入模块: from keras import layers [as 别名]# 或者: from keras.layers import GaussianNoise [as 别名]def _build_model(self, nfeatures, architecture, supervised, confusion, confusion_incr, confusion_max, activations, noise, droprate, coral_layer_idx, optimizer): self.inp_a = tf.placeholder(tf.float32, shape=(None, nfeatures)) self.inp_b = tf.placeholder(tf.float32, shape=(None, nfeatures)) self.labels_a = tf.placeholder(tf.float32, shape=(None, 1)) self.lr = tf.placeholder(tf.float32, [], name='lr') nlayers = len(architecture) layers_a = [self.inp_a] layers_b = [self.inp_b] for i, nunits in enumerate(architecture): print nunits, if i in coral_layer_idx: print '(CORAL)' else: print if isinstance(nunits, int): shared_layer = Dense(nunits, activation='linear') elif nunits == 'noise': shared_layer = GaussianNoise(noise) elif nunits == 'bn': shared_layer = BatchNormalization() elif nunits == 'drop': shared_layer = Dropout(droprate) elif nunits == 'act': if activations == 'prelu': shared_layer = PReLU() elif activations == 'elu': shared_layer = ELU() elif activations == 'leakyrelu': shared_layer = LeakyReLU() else: shared_layer = Activation(activations) layers_a += [shared_layer(layers_a[-1])] layers_b += [shared_layer(layers_b[-1])]
示例9: _build# 需要导入模块: from keras import layers [as 别名]# 或者: from keras.layers import GaussianNoise [as 别名]def _build(self, input_layer, arch, activations, noise, droprate, l2reg): print 'Building network layers...' network = [input_layer] for nunits in arch: print nunits if isinstance(nunits, int): network += [Dense(nunits, activation='linear', kernel_regularizer=l1_l2(l1=0.01, l2=l2reg))(network[-1])] elif nunits == 'noise': network += [GaussianNoise(noise)(network[-1])] elif nunits == 'bn': network += [BatchNormalization()(network[-1])] elif nunits == 'drop': network += [Dropout(droprate)(network[-1])] elif nunits == 'act': if activations == 'prelu': network += [PReLU()(network[-1])] elif activations == 'leakyrelu': network += [LeakyReLU()(network[-1])] elif activations == 'elu': network += [ELU()(network[-1])] else: print 'Activation({})'.format(activations) network += [Activation(activations)(network[-1])] return network
开发者ID:erlendd,项目名称:ddan,代码行数:30,代码来源:dann.py
示例10: _build_model# 需要导入模块: from keras import layers [as 别名]# 或者: from keras.layers import GaussianNoise [as 别名]def _build_model(self, nfeatures, architecture, supervised, confusion, confusion_incr, confusion_max, activations, noise, droprate, mmd_layer_idx, optimizer): self.inp_a = tf.placeholder(tf.float32, shape=(None, nfeatures)) self.inp_b = tf.placeholder(tf.float32, shape=(None, nfeatures)) self.labels_a = tf.placeholder(tf.float32, shape=(None, 1)) nlayers = len(architecture) layers_a = [self.inp_a] layers_b = [self.inp_b] for i, nunits in enumerate(architecture): print nunits, if i in mmd_layer_idx: print '(MMD)' else: print if isinstance(nunits, int): shared_layer = Dense(nunits, activation='linear') elif nunits == 'noise': shared_layer = GaussianNoise(noise) elif nunits == 'bn': shared_layer = BatchNormalization() elif nunits == 'drop': shared_layer = Dropout(droprate) elif nunits == 'act': if activations == 'prelu': shared_layer = PReLU() elif activations == 'elu': shared_layer = ELU() elif activations == 'leakyrelu': shared_layer = LeakyReLU() else: shared_layer = Activation(activations) layers_a += [shared_layer(layers_a[-1])] layers_b += [shared_layer(layers_b[-1])]
开发者ID:erlendd,项目名称:ddan,代码行数:39,代码来源:ddcn.py
示例11: gaussian_noise# 需要导入模块: from keras import layers [as 别名]# 或者: from keras.layers import GaussianNoise [as 别名]def gaussian_noise(layer, layer_in, layerId, tensor=True): stddev = layer['params']['stddev'] out = {layerId: GaussianNoise(stddev=stddev)} if tensor: out[layerId] = out[layerId](*layer_in) return out
示例12: test_keras_import# 需要导入模块: from keras import layers [as 别名]# 或者: from keras.layers import GaussianNoise [as 别名]def test_keras_import(self): model = Sequential() model.add(GaussianNoise(stddev=0.1, input_shape=(16, 1))) model.build() self.keras_param_test(model, 0, 1)
示例13: test_keras_export# 需要导入模块: from keras import layers [as 别名]# 或者: from keras.layers import GaussianNoise [as 别名]def test_keras_export(self): tests = open(os.path.join(settings.BASE_DIR, 'tests', 'unit', 'keras_app', 'keras_export_test.json'), 'r') response = json.load(tests) tests.close() net = yaml.safe_load(json.dumps(response['net'])) net = {'l0': net['Input'], 'l1': net['GaussianNoise']} net['l0']['connection']['output'].append('l1') inp = data(net['l0'], '', 'l0')['l0'] net = gaussian_noise(net['l1'], [inp], 'l1') model = Model(inp, net['l1']) self.assertEqual(model.layers[1].__class__.__name__, 'GaussianNoise')
示例14: semi_train# 需要导入模块: from keras import layers [as 别名]# 或者: from keras.layers import GaussianNoise [as 别名]def semi_train(task_name,sed_model_name,at_model_name,augmentation): """" Training with semi-supervised learning (Guiding learning) Args: task_name: string the name of the task sed_model_name: string the name of the the PS-model at_model_name: string the name of the the PT-model augmentation: bool whether to add Gaussian noise to the input of the PT-model Return: """ #prepare for training of the PS-model LOG.info('config preparation for %s'%at_model_name) train_sed=trainer.trainer(task_name,sed_model_name,False) #prepare for training of the PT-model LOG.info('config preparation for %s'%sed_model_name) train_at=trainer.trainer(task_name,at_model_name,False) #connect the outputs of the two models to produce a model for end-to-end learning creat_model_at=train_at.model_struct.graph() creat_model_sed=train_sed.model_struct.graph() LEN=train_sed.data_loader.LEN DIM=train_sed.data_loader.DIM inputs=Input((LEN,DIM)) #add Gaussian noise if augmentation: at_inputs=GaussianNoise(0.15)(inputs) else: at_inputs=inputs at_out=creat_model_at(at_inputs,False) sed_out=creat_model_sed(inputs,False) out=concatenate([at_out,sed_out],axis=-1) models=Model(inputs,out) #start training (all intermediate files are saved in the PS-model dir) LOG.info('------------start training------------') train_sed.train(models) #copy the final model to the PT-model dir from the PS-model dir shutil.copyfile(train_sed.best_model_path,train_at.best_model_path) #predict results for validation set and test set (the PT-model) LOG.info('------------result of %s------------'%at_model_name) train_at.save_at_result() #audio tagging result #predict results for validation set and test set (the PS-model) LOG.info('------------result of %s------------'%sed_model_name) train_sed.save_at_result() #audio tagging result train_sed.save_sed_result() #event detection result
开发者ID:Kikyo-16,项目名称:Sound_event_detection,代码行数:58,代码来源:main.py
|