您当前的位置:首页 > IT编程 > Keras
| C语言 | Java | VB | VC | python | Android | TensorFlow | C++ | oracle | 学术与代码 | cnn卷积神经网络 | gnn | 图像修复 | Keras | 数据集 | Neo4j | 自然语言处理 | 深度学习 | 医学CAD | 医学影像 | 超参数 | pointnet | pytorch | 异常检测 | Transformers | 情感分类 | 知识图谱 |

自学教程:Python layers.GaussianNoise方法代码示例

51自学网 2020-12-01 11:09:13
  Keras
这篇教程Python layers.GaussianNoise方法代码示例写得很实用,希望能帮到您。

本文整理汇总了Python中keras.layers.GaussianNoise方法的典型用法代码示例。如果您正苦于以下问题:Python layers.GaussianNoise方法的具体用法?Python layers.GaussianNoise怎么用?Python layers.GaussianNoise使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在模块keras.layers的用法示例。

在下文中一共展示了layers.GaussianNoise方法的14个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于我们的系统推荐出更棒的Python代码示例。

示例1: discriminator_network

# 需要导入模块: from keras import layers [as 别名]# 或者: from keras.layers import GaussianNoise [as 别名]def discriminator_network(x):    def add_common_layers(y):        y = layers.advanced_activations.LeakyReLU()(y)        y = layers.Dropout(0.25)(y)        return y    x = layers.GaussianNoise(stddev=0.2)(x)    x = layers.Conv2D(64, kernel_size, **conv_layer_keyword_args)(x)    x = add_common_layers(x)    x = layers.Conv2D(128, kernel_size, **conv_layer_keyword_args)(x)    x = add_common_layers(x)    x = layers.Flatten()(x)    x = layers.Dense(1024)(x)    x = add_common_layers(x)    return layers.Dense(1, activation='sigmoid')(x) 
开发者ID:mjdietzx,项目名称:GAN-Sandbox,代码行数:22,代码来源:gan.py


示例2: create_network

# 需要导入模块: from keras import layers [as 别名]# 或者: from keras.layers import GaussianNoise [as 别名]def create_network(nb_features, nb_labels, padding_value):    # Define the network architecture    input_data = Input(name='input', shape=(None, nb_features)) # nb_features = image height    masking = Masking(mask_value=padding_value)(input_data)    noise = GaussianNoise(0.01)(masking)    blstm = Bidirectional(LSTM(128, return_sequences=True, dropout=0.1))(noise)    blstm = Bidirectional(LSTM(128, return_sequences=True, dropout=0.1))(blstm)    blstm = Bidirectional(LSTM(128, return_sequences=True, dropout=0.1))(blstm)    dense = TimeDistributed(Dense(nb_labels + 1, name="dense"))(blstm)    outrnn = Activation('softmax', name='softmax')(dense)    network = CTCModel([input_data], [outrnn])    network.compile(Adam(lr=0.0001))    return network 
开发者ID:ysoullard,项目名称:CTCModel,代码行数:20,代码来源:example.py


示例3: graves2006

# 需要导入模块: from keras import layers [as 别名]# 或者: from keras.layers import GaussianNoise [as 别名]def graves2006(num_features=26, num_hiddens=100, num_classes=28, std=.6):    """ Implementation of Graves' model    Reference:        [1] Graves, Alex, et al. "Connectionist temporal classification:        labelling unsegmented sequence data with recurrent neural networks."        Proceedings of the 23rd international conference on Machine learning.        ACM, 2006.    """    x = Input(name='inputs', shape=(None, num_features))    o = x    o = GaussianNoise(std)(o)    o = Bidirectional(LSTM(num_hiddens,                      return_sequences=True,                      consume_less='gpu'))(o)    o = TimeDistributed(Dense(num_classes))(o)    return ctc_model(x, o) 
开发者ID:igormq,项目名称:asr-study,代码行数:21,代码来源:models.py


示例4: CNN

# 需要导入模块: from keras import layers [as 别名]# 或者: from keras.layers import GaussianNoise [as 别名]def CNN(input_shape=None, classes=1000):    inputs = Input(shape=input_shape)    # Block 1    x = GaussianNoise(0.3)(inputs)    x = CBRD(x, 64)    x = CBRD(x, 64)    x = MaxPooling2D()(x)    # Block 2    x = CBRD(x, 128)    x = CBRD(x, 128)    x = MaxPooling2D()(x)    # Block 3    x = CBRD(x, 256)    x = CBRD(x, 256)    x = CBRD(x, 256)    x = MaxPooling2D()(x)    # Classification block    x = Flatten(name='flatten')(x)    x = DBRD(x, 4096)    x = DBRD(x, 4096)    x = Dense(classes, activation='softmax', name='predictions')(x)    model = Model(inputs=inputs, outputs=x)    return model 
开发者ID:OsciiArt,项目名称:DeepAA,代码行数:31,代码来源:train.py


示例5: graves

# 需要导入模块: from keras import layers [as 别名]# 或者: from keras.layers import GaussianNoise [as 别名]def graves(input_dim=26, rnn_size=512, output_dim=29, std=0.6):    """ Implementation of Graves 2006 model    Architecture:        Gaussian Noise on input        BiDirectional LSTM    Reference:        ftp://ftp.idsia.ch/pub/juergen/icml2006.pdf    """    K.set_learning_phase(1)    input_data = Input(name='the_input', shape=(None, input_dim))    # x = BatchNormalization(axis=-1)(input_data)    x = GaussianNoise(std)(input_data)    x = Bidirectional(LSTM(rnn_size,                      return_sequences=True,                      implementation=0))(x)    y_pred = TimeDistributed(Dense(output_dim, activation='softmax'))(x)    # Input of labels and other CTC requirements    labels = Input(name='the_labels', shape=[None,], dtype='int32')    input_length = Input(name='input_length', shape=[1], dtype='int32')    label_length = Input(name='label_length', shape=[1], dtype='int32')    # Keras doesn't currently support loss funcs with extra parameters    # so CTC loss is implemented in a lambda layer    loss_out = Lambda(ctc_lambda_func, output_shape=(1,), name='ctc')([y_pred,                                                                       labels,                                                                       input_length,                                                                       label_length])    model = Model(inputs=[input_data, labels, input_length, label_length], outputs=[loss_out])    return model 
开发者ID:robmsmt,项目名称:KerasDeepSpeech,代码行数:39,代码来源:model.py


示例6: supervised_train

# 需要导入模块: from keras import layers [as 别名]# 或者: from keras.layers import GaussianNoise [as 别名]def supervised_train(task_name,sed_model_name,augmentation):	""""	Training with only weakly-supervised learning	Args:		task_name: string			the name of the task		sed_model_name:	string			the name of the model		augmentation:	bool			whether to add Gaussian noise Layer	Return:	"""	LOG.info('config preparation for %s'%sed_model_name)	#prepare for training	train_sed=trainer.trainer(task_name,sed_model_name,False)		#creat model using the model structure prepared in [train_sed]	creat_model_sed=train_sed.model_struct.graph()	LEN=train_sed.data_loader.LEN	DIM=train_sed.data_loader.DIM	inputs=Input((LEN,DIM))	#add Gaussian noise Layer	if augmentation:		inputs_t=GaussianNoise(0.15)(inputs)	else:		inputs_t=inputs	outs=creat_model_sed(inputs_t,False)	#the model used for training	models=Model(inputs,outs)	LOG.info('------------start training------------')	train_sed.train(extra_model=models,train_mode='supervised')	#predict results for validation set and test set	train_sed.save_at_result()	#audio tagging result	train_sed.save_sed_result()	#event detection result 
开发者ID:Kikyo-16,项目名称:Sound_event_detection,代码行数:41,代码来源:main.py


示例7: modelSharedEncoder

# 需要导入模块: from keras import layers [as 别名]# 或者: from keras.layers import GaussianNoise [as 别名]def modelSharedEncoder(self, name):        input = Input(shape=self.latent_dim)        x = self.resblk(input, 256)        z = GaussianNoise(stddev=1)(x, training=True)        return Model(inputs=input, outputs=z, name=name) 
开发者ID:simontomaskarlsson,项目名称:GAN-MRI,代码行数:9,代码来源:UNIT.py


示例8: _build_model

# 需要导入模块: from keras import layers [as 别名]# 或者: from keras.layers import GaussianNoise [as 别名]def _build_model(self, nfeatures, architecture, supervised, confusion, confusion_incr, confusion_max,         activations, noise, droprate, coral_layer_idx, optimizer):        self.inp_a = tf.placeholder(tf.float32, shape=(None, nfeatures))        self.inp_b = tf.placeholder(tf.float32, shape=(None, nfeatures))        self.labels_a = tf.placeholder(tf.float32, shape=(None, 1))        self.lr = tf.placeholder(tf.float32, [], name='lr')        nlayers = len(architecture)        layers_a = [self.inp_a]        layers_b = [self.inp_b]        for i, nunits in enumerate(architecture):            print nunits,            if i in coral_layer_idx: print '(CORAL)'            else: print            if isinstance(nunits, int):                shared_layer = Dense(nunits, activation='linear')            elif nunits == 'noise':                shared_layer = GaussianNoise(noise)            elif nunits == 'bn':                shared_layer = BatchNormalization()            elif nunits == 'drop':                shared_layer = Dropout(droprate)            elif nunits == 'act':                if activations == 'prelu':                    shared_layer = PReLU()                elif activations == 'elu':                    shared_layer = ELU()                elif activations == 'leakyrelu':                    shared_layer = LeakyReLU()                else:                    shared_layer = Activation(activations)            layers_a += [shared_layer(layers_a[-1])]            layers_b += [shared_layer(layers_b[-1])] 
开发者ID:erlendd,项目名称:ddan,代码行数:40,代码来源:deepcoral.py


示例9: _build

# 需要导入模块: from keras import layers [as 别名]# 或者: from keras.layers import GaussianNoise [as 别名]def _build(self, input_layer, arch, activations, noise, droprate, l2reg):        print 'Building network layers...'        network = [input_layer]        for nunits in arch:            print nunits            if isinstance(nunits, int):                network += [Dense(nunits, activation='linear', kernel_regularizer=l1_l2(l1=0.01, l2=l2reg))(network[-1])]            elif nunits == 'noise':                network += [GaussianNoise(noise)(network[-1])]            elif nunits == 'bn':                network += [BatchNormalization()(network[-1])]            elif nunits == 'drop':                network += [Dropout(droprate)(network[-1])]            elif nunits == 'act':                if activations == 'prelu':                    network += [PReLU()(network[-1])]                elif activations == 'leakyrelu':                	network += [LeakyReLU()(network[-1])]                elif activations == 'elu':                	network += [ELU()(network[-1])]                else:                    print 'Activation({})'.format(activations)                    network += [Activation(activations)(network[-1])]        return network 
开发者ID:erlendd,项目名称:ddan,代码行数:30,代码来源:dann.py


示例10: _build_model

# 需要导入模块: from keras import layers [as 别名]# 或者: from keras.layers import GaussianNoise [as 别名]def _build_model(self, nfeatures, architecture, supervised, confusion, confusion_incr, confusion_max,         activations, noise, droprate, mmd_layer_idx, optimizer):        self.inp_a = tf.placeholder(tf.float32, shape=(None, nfeatures))        self.inp_b = tf.placeholder(tf.float32, shape=(None, nfeatures))        self.labels_a = tf.placeholder(tf.float32, shape=(None, 1))        nlayers = len(architecture)        layers_a = [self.inp_a]        layers_b = [self.inp_b]        for i, nunits in enumerate(architecture):            print nunits,            if i in mmd_layer_idx: print '(MMD)'            else: print            if isinstance(nunits, int):                shared_layer = Dense(nunits, activation='linear')            elif nunits == 'noise':                shared_layer = GaussianNoise(noise)            elif nunits == 'bn':                shared_layer = BatchNormalization()            elif nunits == 'drop':                shared_layer = Dropout(droprate)            elif nunits == 'act':                if activations == 'prelu':                    shared_layer = PReLU()                elif activations == 'elu':                    shared_layer = ELU()                elif activations == 'leakyrelu':                    shared_layer = LeakyReLU()                else:                    shared_layer = Activation(activations)            layers_a += [shared_layer(layers_a[-1])]            layers_b += [shared_layer(layers_b[-1])] 
开发者ID:erlendd,项目名称:ddan,代码行数:39,代码来源:ddcn.py


示例11: gaussian_noise

# 需要导入模块: from keras import layers [as 别名]# 或者: from keras.layers import GaussianNoise [as 别名]def gaussian_noise(layer, layer_in, layerId, tensor=True):    stddev = layer['params']['stddev']    out = {layerId: GaussianNoise(stddev=stddev)}    if tensor:        out[layerId] = out[layerId](*layer_in)    return out 
开发者ID:Cloud-CV,项目名称:Fabrik,代码行数:8,代码来源:layers_export.py


示例12: test_keras_import

# 需要导入模块: from keras import layers [as 别名]# 或者: from keras.layers import GaussianNoise [as 别名]def test_keras_import(self):        model = Sequential()        model.add(GaussianNoise(stddev=0.1, input_shape=(16, 1)))        model.build()        self.keras_param_test(model, 0, 1) 
开发者ID:Cloud-CV,项目名称:Fabrik,代码行数:7,代码来源:test_views.py


示例13: test_keras_export

# 需要导入模块: from keras import layers [as 别名]# 或者: from keras.layers import GaussianNoise [as 别名]def test_keras_export(self):        tests = open(os.path.join(settings.BASE_DIR, 'tests', 'unit', 'keras_app',                                  'keras_export_test.json'), 'r')        response = json.load(tests)        tests.close()        net = yaml.safe_load(json.dumps(response['net']))        net = {'l0': net['Input'], 'l1': net['GaussianNoise']}        net['l0']['connection']['output'].append('l1')        inp = data(net['l0'], '', 'l0')['l0']        net = gaussian_noise(net['l1'], [inp], 'l1')        model = Model(inp, net['l1'])        self.assertEqual(model.layers[1].__class__.__name__, 'GaussianNoise') 
开发者ID:Cloud-CV,项目名称:Fabrik,代码行数:14,代码来源:test_views.py


示例14: semi_train

# 需要导入模块: from keras import layers [as 别名]# 或者: from keras.layers import GaussianNoise [as 别名]def semi_train(task_name,sed_model_name,at_model_name,augmentation):	""""	Training with semi-supervised learning (Guiding learning)	Args:		task_name: string			the name of the task                sed_model_name: string			the name of the the PS-model		at_model_name: string			the name of the the PT-model                augmentation: bool			whether to add Gaussian noise to the input of the PT-model	Return:        """	#prepare for training of the PS-model	LOG.info('config preparation for %s'%at_model_name)	train_sed=trainer.trainer(task_name,sed_model_name,False)	#prepare for training of the PT-model	LOG.info('config preparation for %s'%sed_model_name)	train_at=trainer.trainer(task_name,at_model_name,False)	#connect the outputs of the two models to produce a model for end-to-end learning	creat_model_at=train_at.model_struct.graph()	creat_model_sed=train_sed.model_struct.graph()	LEN=train_sed.data_loader.LEN	DIM=train_sed.data_loader.DIM		inputs=Input((LEN,DIM))	#add Gaussian noise	if augmentation:		at_inputs=GaussianNoise(0.15)(inputs)	else:		at_inputs=inputs	at_out=creat_model_at(at_inputs,False)	sed_out=creat_model_sed(inputs,False)	out=concatenate([at_out,sed_out],axis=-1)	models=Model(inputs,out)	#start training (all intermediate files are saved in the PS-model dir)	LOG.info('------------start training------------')		train_sed.train(models)	#copy the final model to the PT-model dir from the PS-model dir	shutil.copyfile(train_sed.best_model_path,train_at.best_model_path) 	#predict results for validation set and test set (the PT-model)	LOG.info('------------result of %s------------'%at_model_name)	train_at.save_at_result()	#audio tagging result	#predict results for validation set and test set (the PS-model)	LOG.info('------------result of %s------------'%sed_model_name)	train_sed.save_at_result()	#audio tagging result	train_sed.save_sed_result()	#event detection result 
开发者ID:Kikyo-16,项目名称:Sound_event_detection,代码行数:58,代码来源:main.py


万事OK自学网:51自学网_软件自学网_CAD自学网自学excel、自学PS、自学CAD、自学C语言、自学css3实例,是一个通过网络自主学习工作技能的自学平台,网友喜欢的软件自学网站。