您当前的位置:首页 > IT编程 > Keras
| C语言 | Java | VB | VC | python | Android | TensorFlow | C++ | oracle | 学术与代码 | cnn卷积神经网络 | gnn | 图像修复 | Keras | 数据集 | Neo4j | 自然语言处理 | 深度学习 | 医学CAD | 医学影像 | 超参数 | pointnet | pytorch | 异常检测 | Transformers | 情感分类 | 知识图谱 |

自学教程:Python layers.ZeroPadding1D方法代码示例

51自学网 2020-12-01 11:09:14
  Keras
这篇教程Python layers.ZeroPadding1D方法代码示例写得很实用,希望能帮到您。

本文整理汇总了Python中keras.layers.ZeroPadding1D方法的典型用法代码示例。如果您正苦于以下问题:Python layers.ZeroPadding1D方法的具体用法?Python layers.ZeroPadding1D怎么用?Python layers.ZeroPadding1D使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在模块keras.layers的用法示例。

在下文中一共展示了layers.ZeroPadding1D方法的7个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于我们的系统推荐出更棒的Python代码示例。

示例1: test_tiny_conv_pad_1d_random

# 需要导入模块: from keras import layers [as 别名]# 或者: from keras.layers import ZeroPadding1D [as 别名]def test_tiny_conv_pad_1d_random(self, model_precision=_MLMODEL_FULL_PRECISION):        np.random.seed(1988)        input_dim = 2        input_length = 10        filter_length = 3        nb_filters = 4        model = Sequential()        model.add(            Conv1D(                nb_filters,                kernel_size=filter_length,                padding="same",                input_shape=(input_length, input_dim),            )        )        model.add(ZeroPadding1D(padding=2))        # Set some random weights        model.set_weights([np.random.rand(*w.shape) for w in model.get_weights()])        # Test the keras model        self._test_model(model, model_precision=model_precision) 
开发者ID:apple,项目名称:coremltools,代码行数:24,代码来源:test_keras2_numeric.py


示例2: test_keras_import

# 需要导入模块: from keras import layers [as 别名]# 或者: from keras.layers import ZeroPadding1D [as 别名]def test_keras_import(self):        # Pad 1D        model = Sequential()        model.add(ZeroPadding1D(2, input_shape=(224, 3)))        model.add(Conv1D(32, 7, strides=2))        model.build()        self.pad_test(model, 'pad_w', 2)        # Pad 2D        model = Sequential()        model.add(ZeroPadding2D(2, input_shape=(224, 224, 3)))        model.add(Conv2D(32, 7, strides=2))        model.build()        self.pad_test(model, 'pad_w', 2)        # Pad 3D        model = Sequential()        model.add(ZeroPadding3D(2, input_shape=(224, 224, 224, 3)))        model.add(Conv3D(32, 7, strides=2))        model.build()        self.pad_test(model, 'pad_w', 2)# ********** Export json tests **********# ********** Data Layers Test ********** 
开发者ID:Cloud-CV,项目名称:Fabrik,代码行数:26,代码来源:test_views.py


示例3: call

# 需要导入模块: from keras import layers [as 别名]# 或者: from keras.layers import ZeroPadding1D [as 别名]def call(self, inputs):        x_input_pad = ZeroPadding1D((self.filter_size-1, self.filter_size-1))(inputs)        conv_1d = Conv1D(filters=self.filter_num,                         kernel_size=self.filter_size,                         strides=1,                         padding='VALID',                         kernel_initializer='normal', # )(x_input_pad)                         activation='tanh')(x_input_pad)        return conv_1d 
开发者ID:yongzhuo,项目名称:Keras-TextClassification,代码行数:11,代码来源:graph.py


示例4: build_ds5_no_ctc_and_xfer_weights

# 需要导入模块: from keras import layers [as 别名]# 或者: from keras.layers import ZeroPadding1D [as 别名]def build_ds5_no_ctc_and_xfer_weights(loaded_model, input_dim=161, fc_size=1024, rnn_size=512, output_dim=29, initialization='glorot_uniform',                  conv_layers=4):    """ Pure CNN implementation"""    K.set_learning_phase(0)    for ind, i in enumerate(loaded_model.layers):        print(ind, i)    kernel_size = 11  #    conv_depth_1 = 64  #    conv_depth_2 = 256  #    input_data = Input(shape=(None, input_dim), name='the_input') #batch x time x spectro size    conv = ZeroPadding1D(padding=(0, 2048))(input_data) #pad on time dimension    x = Conv1D(filters=128, name='conv_1', kernel_size=kernel_size, padding='valid', activation='relu', strides=2,            weights = loaded_model.layers[2].get_weights())(conv)    # x = Conv1D(filters=1024, name='conv_2', kernel_size=kernel_size, padding='valid', activation='relu', strides=2,    #            weights=loaded_model.layers[3].get_weights())(x)    # Last Layer 5+6 Time Dist Dense Layer & Softmax    x = TimeDistributed(Dense(fc_size, activation='relu',                              weights=loaded_model.layers[3].get_weights()))(x)    y_pred = TimeDistributed(Dense(output_dim, name="y_pred", activation="softmax"))(x)    model = Model(inputs=input_data, outputs=y_pred)    return model 
开发者ID:robmsmt,项目名称:KerasDeepSpeech,代码行数:32,代码来源:model.py


示例5: cnn_city

# 需要导入模块: from keras import layers [as 别名]# 或者: from keras.layers import ZeroPadding1D [as 别名]def cnn_city(input_dim=161, fc_size=1024, rnn_size=512, output_dim=29, initialization='glorot_uniform',                  conv_layers=4):    """ Pure CNN implementation    Architecture:        1 Convolutional Layers        1 Fully connected Dense        1 Softmax output    Details:s       - Network does not dynamically adapt to maximum audio size in the first convolutional layer. Max conv          length padded at 2048 chars, otherwise use_conv=False    Reference:    """    #filters = outputsize    #kernal_size = heigth and width of conv window    #strides = stepsize on conv window    kernel_size = 11  #    conv_depth_1 = 64  #    conv_depth_2 = 256  #    input_data = Input(shape=(None, input_dim), name='the_input') #batch x time x spectro size    conv = ZeroPadding1D(padding=(0, 2048))(input_data) #pad on time dimension    x = Conv1D(filters=128, name='conv_1', kernel_size=kernel_size, padding='valid', activation='relu', strides=2)(conv)    # x = Conv1D(filters=1024, name='conv_2', kernel_size=kernel_size, padding='valid', activation='relu', strides=2)(x)    # Last Layer 5+6 Time Dist Dense Layer & Softmax    x = TimeDistributed(Dense(fc_size, activation='relu'))(x)    y_pred = TimeDistributed(Dense(output_dim, name="y_pred", activation="softmax"))(x)    # labels = K.placeholder(name='the_labels', ndim=1, dtype='int32')    labels = Input(name='the_labels', shape=[None,], dtype='int32')    input_length = Input(name='input_length', shape=[1], dtype='int32')    label_length = Input(name='label_length', shape=[1], dtype='int32')    # Keras doesn't currently support loss funcs with extra parameters    # so CTC loss is implemented in a lambda layer    loss_out = Lambda(ctc_lambda_func, output_shape=(1,), name='ctc')([y_pred,                                                                       labels,                                                                       input_length,                                                                       label_length])    model = Model(inputs=[input_data, labels, input_length, label_length], outputs=loss_out)    return model 
开发者ID:robmsmt,项目名称:KerasDeepSpeech,代码行数:55,代码来源:model.py


示例6: create_default_model

# 需要导入模块: from keras import layers [as 别名]# 或者: from keras.layers import ZeroPadding1D [as 别名]def create_default_model(config_data):    nb_filter = 200    filter_length = 6    hidden_dims = nb_filter    embedding_matrix = load_embedding_matrix(config_data)    max_features = embedding_matrix.shape[0]    embedding_dims = embedding_matrix.shape[1]    max_len = config_data['max_sentence_length']    logging.info('Build Model...')    logging.info('Embedding Dimensions: ({},{})'.format(max_features, embedding_dims))    main_input = Input(batch_shape=(None, max_len), dtype='int32', name='main_input')    if not config_data.get('random_embedding', None):        logging.info('Pretrained Word Embeddings')        embeddings = Embedding(            max_features,            embedding_dims,            input_length=max_len,            weights=[embedding_matrix],            trainable=False        )(main_input)    else:        logging.info('Random Word Embeddings')        embeddings = Embedding(max_features, embedding_dims, init='lecun_uniform', input_length=max_len)(main_input)    zeropadding = ZeroPadding1D(filter_length - 1)(embeddings)    conv1 = Convolution1D(        nb_filter=nb_filter,        filter_length=filter_length,        border_mode='valid',        activation='relu',        subsample_length=1)(zeropadding)    max_pooling1 = MaxPooling1D(pool_length=4, stride=2)(conv1)    conv2 = Convolution1D(        nb_filter=nb_filter,        filter_length=filter_length,        border_mode='valid',        activation='relu',        subsample_length=1)(max_pooling1)    max_pooling2 = MaxPooling1D(pool_length=conv2._keras_shape[1])(conv2)    flatten = Flatten()(max_pooling2)    hidden = Dense(hidden_dims)(flatten)    softmax_layer1 = Dense(3, activation='softmax', name='sentiment_softmax', init='lecun_uniform')(hidden)    model = Model(input=[main_input], output=softmax_layer1)    test_model = Model(input=[main_input], output=[softmax_layer1, hidden])    return model, test_model 
开发者ID:spinningbytes,项目名称:deep-mlsa,代码行数:58,代码来源:default_cnn.py


示例7: pooling

# 需要导入模块: from keras import layers [as 别名]# 或者: from keras.layers import ZeroPadding1D [as 别名]def pooling(layer, layer_in, layerId, tensor=True):    poolMap = {        ('1D', 'MAX'): MaxPooling1D,        ('2D', 'MAX'): MaxPooling2D,        ('3D', 'MAX'): MaxPooling3D,        ('1D', 'AVE'): AveragePooling1D,        ('2D', 'AVE'): AveragePooling2D,        ('3D', 'AVE'): AveragePooling3D,    }    out = {}    layer_type = layer['params']['layer_type']    pool_type = layer['params']['pool']    padding = get_padding(layer)    if (layer_type == '1D'):        strides = layer['params']['stride_w']        kernel = layer['params']['kernel_w']        if (padding == 'custom'):            p_w = layer['params']['pad_w']            out[layerId + 'Pad'] = ZeroPadding1D(padding=p_w)(*layer_in)            padding = 'valid'            layer_in = [out[layerId + 'Pad']]    elif (layer_type == '2D'):        strides = (layer['params']['stride_h'], layer['params']['stride_w'])        kernel = (layer['params']['kernel_h'], layer['params']['kernel_w'])        if (padding == 'custom'):            p_h, p_w = layer['params']['pad_h'], layer['params']['pad_w']            out[layerId + 'Pad'] = ZeroPadding2D(padding=(p_h, p_w))(*layer_in)            padding = 'valid'            layer_in = [out[layerId + 'Pad']]    else:        strides = (layer['params']['stride_h'], layer['params']['stride_w'],                   layer['params']['stride_d'])        kernel = (layer['params']['kernel_h'], layer['params']['kernel_w'],                  layer['params']['kernel_d'])        if (padding == 'custom'):            p_h, p_w, p_d = layer['params']['pad_h'], layer['params']['pad_w'],/                layer['params']['pad_d']            out[layerId +                'Pad'] = ZeroPadding3D(padding=(p_h, p_w, p_d))(*layer_in)            padding = 'valid'            layer_in = [out[layerId + 'Pad']]    # Note - figure out a permanent fix for padding calculation of layers    # in case padding is given in layer attributes    # if ('padding' in layer['params']):    #    padding = layer['params']['padding']    out[layerId] = poolMap[(layer_type, pool_type)](        pool_size=kernel, strides=strides, padding=padding)    if tensor:        out[layerId] = out[layerId](*layer_in)    return out# ********** Locally-connected Layers ********** 
开发者ID:Cloud-CV,项目名称:Fabrik,代码行数:55,代码来源:layers_export.py


万事OK自学网:51自学网_软件自学网_CAD自学网自学excel、自学PS、自学CAD、自学C语言、自学css3实例,是一个通过网络自主学习工作技能的自学平台,网友喜欢的软件自学网站。