您当前的位置:首页 > IT编程 > Keras
| C语言 | Java | VB | VC | python | Android | TensorFlow | C++ | oracle | 学术与代码 | cnn卷积神经网络 | gnn | 图像修复 | Keras | 数据集 | Neo4j | 自然语言处理 | 深度学习 | 医学CAD | 医学影像 | 超参数 | pointnet | pytorch | 异常检测 | Transformers | 情感分类 | 知识图谱 |

自学教程:Python layers.GlobalMaxPool1D方法代码示例

51自学网 2020-12-01 11:09:15
  Keras
这篇教程Python layers.GlobalMaxPool1D方法代码示例写得很实用,希望能帮到您。

本文整理汇总了Python中keras.layers.GlobalMaxPool1D方法的典型用法代码示例。如果您正苦于以下问题:Python layers.GlobalMaxPool1D方法的具体用法?Python layers.GlobalMaxPool1D怎么用?Python layers.GlobalMaxPool1D使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在模块keras.layers的用法示例。

在下文中一共展示了layers.GlobalMaxPool1D方法的16个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于我们的系统推荐出更棒的Python代码示例。

示例1: bidLstm_simple

# 需要导入模块: from keras import layers [as 别名]# 或者: from keras.layers import GlobalMaxPool1D [as 别名]def bidLstm_simple(maxlen, embed_size, recurrent_units, dropout_rate, recurrent_dropout_rate, dense_size, nb_classes):    #inp = Input(shape=(maxlen, ))    input_layer = Input(shape=(maxlen, embed_size), )    #x = Embedding(max_features, embed_size, weights=[embedding_matrix], trainable=False)(inp)    x = Bidirectional(LSTM(recurrent_units, return_sequences=True, dropout=dropout_rate,                           recurrent_dropout=dropout_rate))(input_layer)    x = Dropout(dropout_rate)(x)    x_a = GlobalMaxPool1D()(x)    x_b = GlobalAveragePooling1D()(x)    #x_c = AttentionWeightedAverage()(x)    #x_a = MaxPooling1D(pool_size=2)(x)    #x_b = AveragePooling1D(pool_size=2)(x)    x = concatenate([x_a,x_b])    x = Dense(dense_size, activation="relu")(x)    x = Dropout(dropout_rate)(x)    x = Dense(nb_classes, activation="sigmoid")(x)    model = Model(inputs=input_layer, outputs=x)    model.summary()    model.compile(loss='binary_crossentropy',         optimizer='adam',         metrics=['accuracy'])    return model# bidirectional LSTM with attention layer 
开发者ID:kermitt2,项目名称:delft,代码行数:27,代码来源:models.py


示例2: conv

# 需要导入模块: from keras import layers [as 别名]# 或者: from keras.layers import GlobalMaxPool1D [as 别名]def conv(maxlen, embed_size, recurrent_units, dropout_rate, recurrent_dropout_rate, dense_size, nb_classes):    filter_kernels = [7, 7, 5, 5, 3, 3]    #inp = Input(shape=(maxlen, ))    input_layer = Input(shape=(maxlen, embed_size), )    #x = Embedding(max_features, embed_size, weights=[embedding_matrix], trainable=False)(inp)    conv = Conv1D(nb_filter=recurrent_units, filter_length=filter_kernels[0], border_mode='valid', activation='relu')(input_layer)    conv = MaxPooling1D(pool_length=3)(conv)    conv1 = Conv1D(nb_filter=recurrent_units, filter_length=filter_kernels[1], border_mode='valid', activation='relu')(conv)    conv1 = MaxPooling1D(pool_length=3)(conv1)    conv2 = Conv1D(nb_filter=recurrent_units, filter_length=filter_kernels[2], border_mode='valid', activation='relu')(conv1)    conv3 = Conv1D(nb_filter=recurrent_units, filter_length=filter_kernels[3], border_mode='valid', activation='relu')(conv2)    conv4 = Conv1D(nb_filter=recurrent_units, filter_length=filter_kernels[4], border_mode='valid', activation='relu')(conv3)    conv5 = Conv1D(nb_filter=recurrent_units, filter_length=filter_kernels[5], border_mode='valid', activation='relu')(conv4)    conv5 = MaxPooling1D(pool_length=3)(conv5)    conv5 = Flatten()(conv5)    z = Dropout(0.5)(Dense(dense_size, activation='relu')(conv5))    #x = GlobalMaxPool1D()(x)    x = Dense(nb_classes, activation="sigmoid")(z)    model = Model(inputs=input_layer, outputs=x)    model.summary()      model.compile(loss='binary_crossentropy', optimizer='adam', metrics=['accuracy'])    return model# LSTM + conv 
开发者ID:kermitt2,项目名称:delft,代码行数:27,代码来源:models.py


示例3: byte_block

# 需要导入模块: from keras import layers [as 别名]# 或者: from keras.layers import GlobalMaxPool1D [as 别名]def byte_block(in_layer, nb_filter=(64, 100), filter_length=(3, 3), subsample=(2, 1), pool_length=(2, 2)):    block = in_layer    for i in range(len(nb_filter)):        block = Conv1D(filters=nb_filter[i],                       kernel_size=filter_length[i],                       padding='valid',                       activation='tanh',                       strides=subsample[i])(block)        # block = BatchNormalization()(block)        # block = Dropout(0.1)(block)        if pool_length[i]:            block = MaxPooling1D(pool_size=pool_length[i])(block)    # block = Lambda(max_1d, output_shape=(nb_filter[-1],))(block)    block = GlobalMaxPool1D()(block)    block = Dense(128, activation='relu')(block)    return block 
开发者ID:echowei,项目名称:DeepTraffic,代码行数:19,代码来源:iscx2012_cnn_rnn_5class.py


示例4: create_model

# 需要导入模块: from keras import layers [as 别名]# 或者: from keras.layers import GlobalMaxPool1D [as 别名]def create_model(time_window_size, metric):        model = Sequential()        model.add(Conv1D(filters=256, kernel_size=5, padding='same', activation='relu',                         input_shape=(time_window_size, 1)))        model.add(GlobalMaxPool1D())        model.add(Dense(units=time_window_size, activation='linear'))        model.compile(optimizer='adam', loss='mean_squared_error', metrics=[metric])        print(model.summary())        return model 
开发者ID:chen0040,项目名称:keras-anomaly-detection,代码行数:13,代码来源:convolutional.py


示例5: Malconv

# 需要导入模块: from keras import layers [as 别名]# 或者: from keras.layers import GlobalMaxPool1D [as 别名]def Malconv(max_len=200000, win_size=500, vocab_size=256):        inp = Input((max_len,))    emb = Embedding(vocab_size, 8)(inp)    conv1 = Conv1D(kernel_size=(win_size), filters=128, strides=(win_size), padding='same')(emb)    conv2 = Conv1D(kernel_size=(win_size), filters=128, strides=(win_size), padding='same')(emb)    a = Activation('sigmoid', name='sigmoid')(conv2)        mul = multiply([conv1, a])    a = Activation('relu', name='relu')(mul)    p = GlobalMaxPool1D()(a)    d = Dense(64)(p)    out = Dense(1, activation='sigmoid')(d)    return Model(inp, out) 
开发者ID:j40903272,项目名称:MalConv-keras,代码行数:17,代码来源:malconv.py


示例6: lstm

# 需要导入模块: from keras import layers [as 别名]# 或者: from keras.layers import GlobalMaxPool1D [as 别名]def lstm(maxlen, embed_size, recurrent_units, dropout_rate, recurrent_dropout_rate, dense_size, nb_classes):    #inp = Input(shape=(maxlen, ))    input_layer = Input(shape=(maxlen, embed_size), )    #x = Embedding(max_features, embed_size, weights=[embedding_matrix],    #              trainable=False)(inp)    x = LSTM(recurrent_units, return_sequences=True, dropout=dropout_rate,                           recurrent_dropout=dropout_rate)(input_layer)    #x = CuDNNLSTM(recurrent_units, return_sequences=True)(x)    x = Dropout(dropout_rate)(x)    x_a = GlobalMaxPool1D()(x)    x_b = GlobalAveragePooling1D()(x)    #x_c = AttentionWeightedAverage()(x)    #x_a = MaxPooling1D(pool_size=2)(x)    #x_b = AveragePooling1D(pool_size=2)(x)    x = concatenate([x_a,x_b])    x = Dense(dense_size, activation="relu")(x)    x = Dropout(dropout_rate)(x)    x = Dense(nb_classes, activation="sigmoid")(x)    model = Model(inputs=input_layer, outputs=x)    model.summary()    model.compile(loss='binary_crossentropy',                 optimizer='adam',                 metrics=['accuracy'])    return model# bidirectional LSTM 
开发者ID:kermitt2,项目名称:delft,代码行数:29,代码来源:models.py


示例7: cnn3

# 需要导入模块: from keras import layers [as 别名]# 或者: from keras.layers import GlobalMaxPool1D [as 别名]def cnn3(maxlen, embed_size, recurrent_units, dropout_rate, recurrent_dropout_rate, dense_size, nb_classes):    #inp = Input(shape=(maxlen, ))    input_layer = Input(shape=(maxlen, embed_size), )    #x = Embedding(max_features, embed_size, weights=[embedding_matrix], trainable=False)(inp)    x = GRU(recurrent_units, return_sequences=True, dropout=dropout_rate,                           recurrent_dropout=dropout_rate)(input_layer)    #x = Dropout(dropout_rate)(x)     x = Conv1D(filters=recurrent_units, kernel_size=2, padding='same', activation='relu')(x)    x = MaxPooling1D(pool_size=2)(x)    x = Conv1D(filters=recurrent_units, kernel_size=2, padding='same', activation='relu')(x)    x = MaxPooling1D(pool_size=2)(x)    x = Conv1D(filters=recurrent_units, kernel_size=2, padding='same', activation='relu')(x)    x = MaxPooling1D(pool_size=2)(x)    x_a = GlobalMaxPool1D()(x)    x_b = GlobalAveragePooling1D()(x)    #x_c = AttentionWeightedAverage()(x)    #x_a = MaxPooling1D(pool_size=2)(x)    #x_b = AveragePooling1D(pool_size=2)(x)    x = concatenate([x_a,x_b])    #x = Dropout(dropout_rate)(x)    x = Dense(dense_size, activation="relu")(x)    x = Dense(nb_classes, activation="sigmoid")(x)    model = Model(inputs=input_layer, outputs=x)    model.summary()      model.compile(loss='binary_crossentropy', optimizer='adam', metrics=['accuracy'])    return model 
开发者ID:kermitt2,项目名称:delft,代码行数:29,代码来源:models.py


示例8: gru_best

# 需要导入模块: from keras import layers [as 别名]# 或者: from keras.layers import GlobalMaxPool1D [as 别名]def gru_best(maxlen, embed_size, recurrent_units, dropout_rate, recurrent_dropout_rate, dense_size, nb_classes):    #input_layer = Input(shape=(maxlen,))    input_layer = Input(shape=(maxlen, embed_size), )    #embedding_layer = Embedding(max_features, embed_size,    #                            weights=[embedding_matrix], trainable=False)(input_layer)    x = Bidirectional(GRU(recurrent_units, return_sequences=True, dropout=dropout_rate,                           recurrent_dropout=dropout_rate))(input_layer)    x = Dropout(dropout_rate)(x)    x = Bidirectional(GRU(recurrent_units, return_sequences=True, dropout=dropout_rate,                           recurrent_dropout=dropout_rate))(x)    #x = AttentionWeightedAverage(maxlen)(x)    x_a = GlobalMaxPool1D()(x)    x_b = GlobalAveragePooling1D()(x)    #x_c = AttentionWeightedAverage()(x)    #x_a = MaxPooling1D(pool_size=2)(x)    #x_b = AveragePooling1D(pool_size=2)(x)    x = concatenate([x_a,x_b], axis=1)    #x = Dense(dense_size, activation="relu")(x)    #x = Dropout(dropout_rate)(x)    x = Dense(dense_size, activation="relu")(x)    output_layer = Dense(nb_classes, activation="sigmoid")(x)    model = Model(inputs=input_layer, outputs=output_layer)    model.summary()    model.compile(loss='binary_crossentropy',                  #optimizer=RMSprop(clipvalue=1, clipnorm=1),                  optimizer='adam',                  metrics=['accuracy'])    return model# 1 layer bid GRU 
开发者ID:kermitt2,项目名称:delft,代码行数:34,代码来源:models.py


示例9: gru_simple

# 需要导入模块: from keras import layers [as 别名]# 或者: from keras.layers import GlobalMaxPool1D [as 别名]def gru_simple(maxlen, embed_size, recurrent_units, dropout_rate, recurrent_dropout_rate, dense_size, nb_classes):    #input_layer = Input(shape=(maxlen,))    input_layer = Input(shape=(maxlen, embed_size), )    #embedding_layer = Embedding(max_features, embed_size,    #                            weights=[embedding_matrix], trainable=False)(input_layer)    x = Bidirectional(GRU(recurrent_units, return_sequences=True, dropout=dropout_rate,                           recurrent_dropout=dropout_rate))(input_layer)    #x = AttentionWeightedAverage(maxlen)(x)    x_a = GlobalMaxPool1D()(x)    x_b = GlobalAveragePooling1D()(x)    #x_c = AttentionWeightedAverage()(x)    #x_a = MaxPooling1D(pool_size=2)(x)    #x_b = AveragePooling1D(pool_size=2)(x)    x = concatenate([x_a,x_b], axis=1)    #x = Dense(dense_size, activation="relu")(x)    #x = Dropout(dropout_rate)(x)    x = Dense(dense_size, activation="relu")(x)    output_layer = Dense(nb_classes, activation="sigmoid")(x)    model = Model(inputs=input_layer, outputs=output_layer)    model.summary()    model.compile(loss='binary_crossentropy',                  optimizer=RMSprop(clipvalue=1, clipnorm=1),                  #optimizer='adam',                  metrics=['accuracy'])    return model# bid GRU + bid LSTM 
开发者ID:kermitt2,项目名称:delft,代码行数:31,代码来源:models.py


示例10: mix1

# 需要导入模块: from keras import layers [as 别名]# 或者: from keras.layers import GlobalMaxPool1D [as 别名]def mix1(maxlen, embed_size, recurrent_units, dropout_rate, recurrent_dropout_rate, dense_size, nb_classes):    #input_layer = Input(shape=(maxlen,))    input_layer = Input(shape=(maxlen, embed_size), )    #embedding_layer = Embedding(max_features, embed_size,    #                            weights=[embedding_matrix], trainable=False)(input_layer)    x = Bidirectional(GRU(recurrent_units, return_sequences=True, dropout=dropout_rate,                           recurrent_dropout=recurrent_dropout_rate))(input_layer)    x = Dropout(dropout_rate)(x)    x = Bidirectional(LSTM(recurrent_units, return_sequences=True, dropout=dropout_rate,                           recurrent_dropout=recurrent_dropout_rate))(x)    x_a = GlobalMaxPool1D()(x)    x_b = GlobalAveragePooling1D()(x)    x = concatenate([x_a,x_b])    x = Dense(dense_size, activation="relu")(x)    output_layer = Dense(nb_classes, activation="sigmoid")(x)    model = Model(inputs=input_layer, outputs=output_layer)    model.summary()    model.compile(loss='binary_crossentropy',                  optimizer=RMSprop(clipvalue=1, clipnorm=1),                  #optimizer='adam',                  metrics=['accuracy'])    return model# DPCNN 
开发者ID:kermitt2,项目名称:delft,代码行数:30,代码来源:models.py


示例11: build_model_bilstm_attention

# 需要导入模块: from keras import layers [as 别名]# 或者: from keras.layers import GlobalMaxPool1D [as 别名]def build_model_bilstm_attention(self):        if args.use_lstm:            if args.use_cudnn_cell:                layer_cell = CuDNNLSTM            else:                layer_cell = LSTM        else:            if args.use_cudnn_cell:                layer_cell = CuDNNGRU            else:                layer_cell = GRU        # bert embedding        bert_inputs, bert_output = KerasBertEmbedding().bert_encode()        # Bi-LSTM        x = Bidirectional(layer_cell(units=args.units, return_sequences=args.return_sequences,                                     kernel_regularizer=regularizers.l2(args.l2 * 0.1),                                     recurrent_regularizer=regularizers.l2(args.l2)                                     ))(bert_output)        x = TimeDistributed(Dropout(args.keep_prob))(x)  # 这个用不了,好像是输入不对, dims<3吧        x = attention(x)        x = Flatten()(x)        x = Dropout(args.keep_prob)(x)        # # 平均池化、最大池化拼接        # avg_pool = GlobalAvgPool1D()(x)        # max_pool = GlobalMaxPool1D()(x)        # print(max_pool.shape)        # print(avg_pool.shape)        # concat = concatenate([avg_pool, max_pool])        # x = Dense(int(args.units/4), activation="relu")(concat)        # x = Dropout(args.keep_prob)(x)        # 最后就是softmax        dense_layer = Dense(args.label, activation=args.activation)(x)        output_layers = [dense_layer]        self.model = Model(bert_inputs, output_layers) 
开发者ID:yongzhuo,项目名称:nlp_xiaojiang,代码行数:38,代码来源:keras_bert_classify_bi_lstm.py


示例12: create

# 需要导入模块: from keras import layers [as 别名]# 或者: from keras.layers import GlobalMaxPool1D [as 别名]def create(inputtokens, vocabsize, denseunits=8, densedrop=0.1, embedding=32):        model = Sequential()        # Embedding layer        model.add(Embedding(input_dim=vocabsize, output_dim=embedding,                            input_length=inputtokens))        model.add(GlobalMaxPool1D())        # Hidden layer        model.add(Dense(denseunits, activation='relu'))        model.add(Dropout(densedrop))        # Output layer        model.add(Dense(vocabsize, activation='softmax'))        return model 
开发者ID:albarji,项目名称:neurowriter,代码行数:14,代码来源:models.py


示例13: create_model

# 需要导入模块: from keras import layers [as 别名]# 或者: from keras.layers import GlobalMaxPool1D [as 别名]def create_model(self):        embedding_size = 100        self.model = Sequential()        self.model.add(Embedding(input_dim=self.vocab_size, input_length=self.max_len, output_dim=embedding_size))        self.model.add(SpatialDropout1D(0.2))        self.model.add(Conv1D(filters=256, kernel_size=5, padding='same', activation='relu'))        self.model.add(GlobalMaxPool1D())        self.model.add(Dense(units=len(self.labels), activation='softmax'))        self.model.compile(optimizer='adam', loss='categorical_crossentropy', metrics=['accuracy']) 
开发者ID:chen0040,项目名称:keras-english-resume-parser-and-analyzer,代码行数:12,代码来源:cnn.py


示例14: RnnVersion2

# 需要导入模块: from keras import layers [as 别名]# 或者: from keras.layers import GlobalMaxPool1D [as 别名]def RnnVersion2(n_recurrent=50, n_dense=50, word_embedding_matrix= None, n_filters=50,dropout_rate=0.2, l2_penalty=0.0001,                n_capsule = 10, n_routings = 5, capsule_dim = 16,max_len = 170, emb_size = 21099):    K.clear_session()        def conv_block(x, n, kernel_size):        x = Conv1D(n, kernel_size, activation='relu') (x)        x = Conv1D(n_filters, kernel_size, activation='relu') (x)        x_att = AttentionWithContext()(x)        x_avg = GlobalAvgPool1D()(x)        x_max = GlobalMaxPool1D()(x)        return concatenate([x_att, x_avg, x_max])       def att_max_avg_pooling(x):        x_att = AttentionWithContext()(x)        x_avg = GlobalAvgPool1D()(x)        x_max = GlobalMaxPool1D()(x)        return concatenate([x_att, x_avg, x_max])    inputs = Input(shape=(max_len,))    emb = Embedding(emb_size, 300,trainable=True)(inputs)    # model 0    x0 = SpatialDropout1D(dropout_rate)(emb)    s0 = Bidirectional(        CuDNNGRU(2*n_recurrent, return_sequences=True,                 kernel_regularizer=l2(l2_penalty),                 recurrent_regularizer=l2(l2_penalty)))(x0)    x0 = att_max_avg_pooling(s0)    # model 1    x1 = SpatialDropout1D(dropout_rate)(emb)    s1 = Bidirectional(        CuDNNGRU(2*n_recurrent, return_sequences=True,                 kernel_regularizer=l2(l2_penalty),                 recurrent_regularizer=l2(l2_penalty)))(x1)    x1 = att_max_avg_pooling(s1)        # combine sequence output    x = concatenate([s0, s1])#     x = att_max_avg_pooling(x)    x = Bidirectional(        CuDNNGRU(n_recurrent, return_sequences=True,                  kernel_regularizer=l2(l2_penalty),                 recurrent_regularizer=l2(l2_penalty)))(x)    x = att_max_avg_pooling(x)        # combine it all    x = concatenate([x,x0, x1],name = 'concatenate')    outputs = Dense(6, activation='softmax')(x)    model = Model(inputs=inputs, outputs=outputs)    model.compile(loss='categorical_crossentropy', optimizer='nadam',metrics =['accuracy'])    return model 
开发者ID:WeavingWong,项目名称:DigiX_HuaWei_Population_Age_Attribution_Predict,代码行数:56,代码来源:models.py


示例15: lstm_cnn

# 需要导入模块: from keras import layers [as 别名]# 或者: from keras.layers import GlobalMaxPool1D [as 别名]def lstm_cnn(maxlen, embed_size, recurrent_units, dropout_rate, recurrent_dropout_rate, dense_size, nb_classes):    #inp = Input(shape=(maxlen, ))    input_layer = Input(shape=(maxlen, embed_size), )    #x = Embedding(max_features, embed_size, weights=[embedding_matrix],    #              trainable=False)(inp)    x = LSTM(recurrent_units, return_sequences=True, dropout=dropout_rate,                           recurrent_dropout=dropout_rate)(input_layer)    x = Dropout(dropout_rate)(x)    x = Conv1D(filters=recurrent_units, kernel_size=2, padding='same', activation='relu')(x)    x = Conv1D(filters=300,                       kernel_size=5,                       padding='valid',                       activation='tanh',                       strides=1)(x)    #x = MaxPooling1D(pool_size=2)(x)    #x = Conv1D(filters=300,    #                   kernel_size=5,    #                   padding='valid',    #                   activation='tanh',    #                   strides=1)(x)    #x = MaxPooling1D(pool_size=2)(x)    #x = Conv1D(filters=300,    #                   kernel_size=3,    #                   padding='valid',    #                   activation='tanh',    #                   strides=1)(x)    x_a = GlobalMaxPool1D()(x)    x_b = GlobalAveragePooling1D()(x)    x = concatenate([x_a,x_b])    x = Dense(dense_size, activation="relu")(x)    x = Dropout(dropout_rate)(x)    x = Dense(nb_classes, activation="sigmoid")(x)    model = Model(inputs=input_layer, outputs=x)    model.summary()    model.compile(loss='binary_crossentropy',                 optimizer='adam',                 metrics=['accuracy'])    return model# 2 bid. GRU 
开发者ID:kermitt2,项目名称:delft,代码行数:48,代码来源:models.py


示例16: build_model_bilstm_layers

# 需要导入模块: from keras import layers [as 别名]# 或者: from keras.layers import GlobalMaxPool1D [as 别名]def build_model_bilstm_layers(self):        if args.use_lstm:            if args.use_cudnn_cell:                layer_cell = CuDNNLSTM            else:                layer_cell = LSTM        else:            if args.use_cudnn_cell:                layer_cell = CuDNNGRU            else:                layer_cell = GRU        # bert embedding        bert_inputs, bert_output = KerasBertEmbedding().bert_encode()        # bert_output = bert_output[:0:]        # layer_get_cls = Lambda(lambda x: x[:, 0:1, :])        # bert_output = layer_get_cls(bert_output)        # print("layer_get_cls:")        # print(bert_output.shape)        # Bi-LSTM        x = Bidirectional(layer_cell(units=args.units, return_sequences=args.return_sequences,                                     kernel_regularizer=regularizers.l2(args.l2 * 0.1),                                     recurrent_regularizer=regularizers.l2(args.l2)                                     ))(bert_output)        # blstm_layer = TimeDistributed(Dropout(args.keep_prob))(blstm_layer) 这个用不了,好像是输入不对, dims<3吧        x = Dropout(args.keep_prob)(x)        x = Bidirectional(layer_cell(units=args.units, return_sequences=args.return_sequences,                                     kernel_regularizer=regularizers.l2(args.l2 * 0.1),                                     recurrent_regularizer=regularizers.l2(args.l2)))(x)        x = Dropout(args.keep_prob)(x)        x = Bidirectional(layer_cell(units=args.units, return_sequences=args.return_sequences,                                     kernel_regularizer=regularizers.l2(args.l2 * 0.1),                                     recurrent_regularizer=regularizers.l2(args.l2)))(x)        x = Dropout(args.keep_prob)(x)        # 平均池化、最大池化拼接        avg_pool = GlobalAvgPool1D()(x)        max_pool = GlobalMaxPool1D()(x)        print(max_pool.shape)        print(avg_pool.shape)        concat = concatenate([avg_pool, max_pool])        x = Dense(int(args.units / 4), activation="relu")(concat)        x = Dropout(args.keep_prob)(x)        # 最后就是softmax        dense_layer = Dense(args.label, activation=args.activation)(x)        output_layers = [dense_layer]        self.model = Model(bert_inputs, output_layers) 
开发者ID:yongzhuo,项目名称:nlp_xiaojiang,代码行数:50,代码来源:keras_bert_classify_bi_lstm.py


万事OK自学网:51自学网_软件自学网_CAD自学网自学excel、自学PS、自学CAD、自学C语言、自学css3实例,是一个通过网络自主学习工作技能的自学平台,网友喜欢的软件自学网站。