您当前的位置:首页 > IT编程 > Keras
| C语言 | Java | VB | VC | python | Android | TensorFlow | C++ | oracle | 学术与代码 | cnn卷积神经网络 | gnn | 图像修复 | Keras | 数据集 | Neo4j | 自然语言处理 | 深度学习 | 医学CAD | 医学影像 | 超参数 | pointnet | pytorch | 异常检测 | Transformers | 情感分类 | 知识图谱 |

自学教程:Python layers.RNN属性代码示例

51自学网 2020-12-01 11:09:16
  Keras
这篇教程Python layers.RNN属性代码示例写得很实用,希望能帮到您。

本文整理汇总了Python中keras.layers.RNN属性的典型用法代码示例。如果您正苦于以下问题:Python layers.RNN属性的具体用法?Python layers.RNN怎么用?Python layers.RNN使用的例子?那么恭喜您, 这里精选的属性代码示例或许可以为您提供帮助。您也可以进一步了解该属性所在模块keras.layers的用法示例。

在下文中一共展示了layers.RNN属性的5个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于我们的系统推荐出更棒的Python代码示例。

示例1: __init__

# 需要导入模块: from keras import layers [as 别名]# 或者: from keras.layers import RNN [as 别名]def __init__(self, layers, cell_type, cell_params):        """        Build the rnn with the given number of layers.        :param layers: list            list of integers. The i-th element of the list is the number of hidden neurons for the i-th layer.        :param cell_type: 'gru', 'rnn', 'lstm'        :param cell_params: dict            A dictionary containing all the paramters for the RNN cell.            see keras.layers.LSTMCell, keras.layers.GRUCell or keras.layers.SimpleRNNCell for more details.        """        # init params        self.model = None        self.horizon = None        self.layers = layers        self.cell_params = cell_params        if cell_type == 'lstm':            self.cell = LSTMCell        elif cell_type == 'gru':            self.cell = GRUCell        elif cell_type == 'rnn':            self.cell = SimpleRNNCell        else:            raise NotImplementedError('{0} is not a valid cell type.'.format(cell_type))        # Build deep rnn        self.rnn = self._build_rnn() 
开发者ID:albertogaspar,项目名称:dts,代码行数:27,代码来源:Recurrent.py


示例2: _build_rnn

# 需要导入模块: from keras import layers [as 别名]# 或者: from keras.layers import RNN [as 别名]def _build_rnn(self):        cells = []        for _ in range(self.layers):            cells.append(self.cell(**self.cell_params))        deep_rnn = RNN(cells, return_sequences=False, return_state=False)        return deep_rnn 
开发者ID:albertogaspar,项目名称:dts,代码行数:8,代码来源:Recurrent.py


示例3: __init__

# 需要导入模块: from keras import layers [as 别名]# 或者: from keras.layers import RNN [as 别名]def __init__(self,                 encoder_layers,                 decoder_layers,                 output_sequence_length,                 dropout=0.0,                 l2=0.01,                 cell_type='lstm'):        """        :param encoder_layers: list            encoder (RNN) architecture: [n_hidden_units_1st_layer, n_hidden_units_2nd_layer, ...]        :param decoder_layers: list            decoder (RNN) architecture: [n_hidden_units_1st_layer, n_hidden_units_2nd_layer, ...]        :param output_sequence_length: int            number of timestep to be predicted.        :param cell_type: str            gru or lstm.        """        self.encoder_layers = encoder_layers        self.decoder_layers = decoder_layers        self.output_sequence_length = output_sequence_length        self.dropout = dropout        self.l2 = l2        if cell_type == 'lstm':            self.cell = LSTMCell        elif cell_type == 'gru':            self.cell = GRUCell        else:            raise ValueError('{0} is not a valid cell type. Choose between gru and lstm.'.format(cell_type)) 
开发者ID:albertogaspar,项目名称:dts,代码行数:30,代码来源:Seq2Seq.py


示例4: _build_encoder

# 需要导入模块: from keras import layers [as 别名]# 或者: from keras.layers import RNN [as 别名]def _build_encoder(self):        """        Build the encoder multilayer RNN (stacked RNN)        """        # Create a list of RNN Cells, these get stacked one after the other in the RNN,        # implementing an efficient stacked RNN        encoder_cells = []        for n_hidden_neurons in self.encoder_layers:            encoder_cells.append(self.cell(units=n_hidden_neurons,                                           dropout=self.dropout,                                           kernel_regularizer=l2(self.l2),                                           recurrent_regularizer=l2(self.l2)))        self.encoder = RNN(encoder_cells, return_state=True, name='encoder') 
开发者ID:albertogaspar,项目名称:dts,代码行数:16,代码来源:Seq2Seq.py


示例5: _build_decoder

# 需要导入模块: from keras import layers [as 别名]# 或者: from keras.layers import RNN [as 别名]def _build_decoder(self):        decoder_cells = []        for n_hidden_neurons in self.decoder_layers:            decoder_cells.append(self.cell(units=n_hidden_neurons,                                           dropout=self.dropout,                                           kernel_regularizer=l2(self.l2),                                           recurrent_regularizer=l2(self.l2)                                           ))        # return output for EACH timestamp        self.decoder = RNN(decoder_cells, return_sequences=True, return_state=True, name='decoder') 
开发者ID:albertogaspar,项目名称:dts,代码行数:12,代码来源:Seq2Seq.py



注:本文中的keras.layers.RNN属性
Python layers.average方法代码示例
Python layers.InputLayer方法代码示例

万事OK自学网:51自学网_软件自学网_CAD自学网自学excel、自学PS、自学CAD、自学C语言、自学css3实例,是一个通过网络自主学习工作技能的自学平台,网友喜欢的软件自学网站。