您当前的位置:首页 > IT编程 > Keras
| C语言 | Java | VB | VC | python | Android | TensorFlow | C++ | oracle | 学术与代码 | cnn卷积神经网络 | gnn | 图像修复 | Keras | 数据集 | Neo4j | 自然语言处理 | 深度学习 | 医学CAD | 医学影像 | 超参数 | pointnet | pytorch | 异常检测 | Transformers | 情感分类 | 知识图谱 |

自学教程:Python layers.average方法代码示例

51自学网 2020-12-01 11:09:16
  Keras
这篇教程Python layers.average方法代码示例写得很实用,希望能帮到您。

本文整理汇总了Python中keras.layers.average方法的典型用法代码示例。如果您正苦于以下问题:Python layers.average方法的具体用法?Python layers.average怎么用?Python layers.average使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在模块keras.layers的用法示例。

在下文中一共展示了layers.average方法的9个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于我们的系统推荐出更棒的Python代码示例。

示例1: test_dense_elementwise_params

# 需要导入模块: from keras import layers [as 别名]# 或者: from keras.layers import average [as 别名]def test_dense_elementwise_params(self):        options = dict(modes=[add, multiply, concatenate, average, maximum])        def build_model(mode):            x1 = Input(shape=(3,))            x2 = Input(shape=(3,))            y1 = Dense(4)(x1)            y2 = Dense(4)(x2)            z = mode([y1, y2])            model = Model([x1, x2], z)            return mode, model        product = itertools.product(*options.values())        args = [build_model(p[0]) for p in product]        print("Testing a total of %s cases. This could take a while" % len(args))        for param, model in args:            self._run_test(model, param) 
开发者ID:apple,项目名称:coremltools,代码行数:19,代码来源:test_keras2_numeric.py


示例2: test_merge_average

# 需要导入模块: from keras import layers [as 别名]# 或者: from keras.layers import average [as 别名]def test_merge_average():    i1 = layers.Input(shape=(4, 5))    i2 = layers.Input(shape=(4, 5))    o = layers.average([i1, i2])    assert o._keras_shape == (None, 4, 5)    model = models.Model([i1, i2], o)    avg_layer = layers.Average()    o2 = avg_layer([i1, i2])    assert avg_layer.output_shape == (None, 4, 5)    x1 = np.random.random((2, 4, 5))    x2 = np.random.random((2, 4, 5))    out = model.predict([x1, x2])    assert out.shape == (2, 4, 5)    assert_allclose(out, 0.5 * (x1 + x2), atol=1e-4) 
开发者ID:hello-sea,项目名称:DeepLearning_Wavelet-LSTM,代码行数:18,代码来源:merge_test.py


示例3: test_imdb_fasttext_first_2

# 需要导入模块: from keras import layers [as 别名]# 或者: from keras.layers import average [as 别名]def test_imdb_fasttext_first_2(self):        max_features = 10        max_len = 6        embedding_dims = 4        pool_length = 2        model = Sequential()        model.add(Embedding(max_features, embedding_dims, input_length=max_len))        # we add a AveragePooling1D, which will average the embeddings        # of all words in the document        model.add(AveragePooling1D(pool_size=pool_length))        self._test_model(model, one_dim_seq_flags=[True]) 
开发者ID:apple,项目名称:coremltools,代码行数:16,代码来源:test_keras2_numeric.py


示例4: fconcatenate

# 需要导入模块: from keras import layers [as 别名]# 或者: from keras.layers import average [as 别名]def fconcatenate(path_orig, path_down):    if path_orig._keras_shape == path_down._keras_shape:        path_down_cropped = path_down    else:        crop_x_1 = int(np.ceil((path_down._keras_shape[2] - path_orig._keras_shape[2]) / 2))        crop_x_0 = path_down._keras_shape[2] - path_orig._keras_shape[2] - crop_x_1        crop_y_1 = int(np.ceil((path_down._keras_shape[3] - path_orig._keras_shape[3]) / 2))        crop_y_0 = path_down._keras_shape[3] - path_orig._keras_shape[3] - crop_y_1        crop_z_1 = int(np.ceil((path_down._keras_shape[4] - path_orig._keras_shape[4]) / 2))        crop_z_0 = path_down._keras_shape[4] - path_orig._keras_shape[4] - crop_z_1        path_down_cropped = Cropping3D(cropping=((crop_x_0, crop_x_1), (crop_y_0, crop_y_1), (crop_z_0, crop_z_1)))(path_down)    connected = average([path_orig, path_down_cropped])    return connected 
开发者ID:thomaskuestner,项目名称:CNNArt,代码行数:15,代码来源:MSnetworks.py


示例5: two_stream_fuse

# 需要导入模块: from keras import layers [as 别名]# 或者: from keras.layers import average [as 别名]def two_stream_fuse(self):        # spatial stream (frozen)        cnn_spatial_multi = self.cnn_spatial_multi()        # temporal stream (frozen)        cnn_temporal_multi = self.cnn_temporal_multi()        # fused by taking average        outputs = average([cnn_spatial_multi.output, cnn_temporal_multi.output])        model = Model([cnn_spatial_multi.input, cnn_temporal_multi.input], outputs)        return model    # CNN model for the temporal stream with multiple inputs 
开发者ID:wushidonguc,项目名称:two-stream-action-recognition-keras,代码行数:17,代码来源:fuse_validate_model.py


示例6: cnn_spatial

# 需要导入模块: from keras import layers [as 别名]# 或者: from keras.layers import average [as 别名]def cnn_spatial(self):        base_model = InceptionV3(weights='imagenet', include_top=False)            # add a global spatial average pooling layer        x = base_model.output        x = GlobalAveragePooling2D()(x)        # let's add a fully-connected layer        x = Dense(1024, activation='relu')(x)        # and a logistic layer        predictions = Dense(self.nb_classes, activation='softmax')(x)            model = Model(inputs=base_model.input, outputs=predictions)        return model    # CNN model for the temporal stream 
开发者ID:wushidonguc,项目名称:two-stream-action-recognition-keras,代码行数:17,代码来源:fuse_validate_model.py


示例7: eltwise

# 需要导入模块: from keras import layers [as 别名]# 或者: from keras.layers import average [as 别名]def eltwise(layer, layer_in, layerId):    out = {}    if (layer['params']['layer_type'] == 'Multiply'):        # This input reverse is to handle visualization        out[layerId] = multiply(layer_in[::-1])    elif (layer['params']['layer_type'] == 'Sum'):        out[layerId] = add(layer_in[::-1])    elif (layer['params']['layer_type'] == 'Average'):        out[layerId] = average(layer_in[::-1])    elif (layer['params']['layer_type'] == 'Dot'):        out[layerId] = dot(layer_in[::-1], -1)    else:        out[layerId] = maximum(layer_in[::-1])    return out 
开发者ID:Cloud-CV,项目名称:Fabrik,代码行数:16,代码来源:layers_export.py


示例8: fCreateModel_SPP_MultiPath

# 需要导入模块: from keras import layers [as 别名]# 或者: from keras.layers import average [as 别名]def fCreateModel_SPP_MultiPath(patchSize, patchSize2, dr_rate=0.0, iPReLU=0, l2_reg=1e-6):    # Total params: 2,057,510    # There are 2 pathway, whose receptive fields are in multiple relation.    # Their outputs are averaged as the final prediction    # The third down sampling convolutional layer in each pathway is replaced by the SPP module    Strides = fgetStrides()    kernelnumber = fgetKernelNumber()        sharedConv1 = fCreateVNet_Block    sharedDown1 = fCreateVNet_DownConv_Block    sharedConv2 = fCreateVNet_Block    sharedDown2 = fCreateVNet_DownConv_Block    sharedConv3 = fCreateVNet_Block    sharedSPP = fSPP        inp1 = Input(shape=(1, patchSize[0], patchSize[1], patchSize[2]))    inp1_Conv_1 = sharedConv1(inp1, kernelnumber[0], type=fgetLayerNumConv(), l2_reg=l2_reg)    inp1_DownConv_1 = sharedDown1(inp1_Conv_1, inp1_Conv_1._keras_shape[1], Strides[0],                                                     iPReLU=iPReLU, dr_rate=dr_rate, l2_reg=l2_reg)    inp1_Conv_2 = sharedConv2(inp1_DownConv_1, kernelnumber[1], type=fgetLayerNumConv(), l2_reg=l2_reg)    inp1_DownConv_2 = sharedDown2(inp1_Conv_2, inp1_Conv_2._keras_shape[1], Strides[1],                                                   iPReLU=iPReLU, dr_rate=dr_rate, l2_reg=l2_reg)    inp1_Conv_3 = sharedConv3(inp1_DownConv_2, kernelnumber[2], type=fgetLayerNumConv(), l2_reg=l2_reg)    inp1_SPP = sharedSPP(inp1_Conv_3, level=3)        inp2 = Input(shape=(1, patchSize2[0], patchSize2[1], patchSize2[2]))    inp2_Conv_1 = sharedConv1(inp2, kernelnumber[0], type=fgetLayerNumConv(), l2_reg=l2_reg)    inp2_DownConv_1 = sharedDown1(inp2_Conv_1, inp2_Conv_1._keras_shape[1], Strides[0],                                                     iPReLU=iPReLU, dr_rate=dr_rate, l2_reg=l2_reg)    inp2_Conv_2 = sharedConv2(inp2_DownConv_1, kernelnumber[1], type=fgetLayerNumConv(), l2_reg=l2_reg)    inp2_DownConv_2 = sharedDown2(inp2_Conv_2, inp2_Conv_2._keras_shape[1], Strides[1],                                                   iPReLU=iPReLU, dr_rate=dr_rate, l2_reg=l2_reg)    inp2_Conv_3 = sharedConv3(inp2_DownConv_2, kernelnumber[2], type=fgetLayerNumConv(), l2_reg=l2_reg)    inp2_SPP = sharedSPP(inp2_Conv_3, level=3)        SPP_aver = average([inp1_SPP, inp2_SPP])        dropout_out = Dropout(dr_rate)(SPP_aver)    dense_out = Dense(units=2,                          kernel_initializer='normal',                          kernel_regularizer=l2(l2_reg))(dropout_out)    output_fc = Activation('softmax')(dense_out)    model_shared = Model(inputs=[inp1, inp2], outputs = output_fc)        return model_shared 
开发者ID:thomaskuestner,项目名称:CNNArt,代码行数:45,代码来源:MSnetworks.py


示例9: fCreateModel_FCN_MultiFM

# 需要导入模块: from keras import layers [as 别名]# 或者: from keras.layers import average [as 别名]def fCreateModel_FCN_MultiFM(patchSize, dr_rate=0.0, iPReLU=0,l1_reg=0, l2_reg=1e-6):    # Total params: 1,420,549    # The dense layer is repleced by a convolutional layer with filters=2 for the two classes    # The FM from the third down scaled convolutional layer is upsempled by deconvolution and    # added with the FM from the second down scaled convolutional layer.    # The combined FM goes through a convolutional layer with filters=2 for the two classes    # The two predictions are averages as the final result.    Strides = fgetStrides()    kernelnumber = fgetKernelNumber()    inp = Input(shape=(1, int(patchSize[0]), int(patchSize[1]), int(patchSize[2])))    after_Conv_1 = fCreateVNet_Block(inp, kernelnumber[0], type=fgetLayerNumConv(), l2_reg=l2_reg)    after_DownConv_1 = fCreateVNet_DownConv_Block(after_Conv_1, after_Conv_1._keras_shape[1], Strides[0],                                                     iPReLU=iPReLU, dr_rate=dr_rate, l2_reg=l2_reg)    after_Conv_2 = fCreateVNet_Block(after_DownConv_1, kernelnumber[1], type=fgetLayerNumConv(), l2_reg=l2_reg)    after_DownConv_2 = fCreateVNet_DownConv_Block(after_Conv_2, after_Conv_2._keras_shape[1], Strides[1],                                                   iPReLU=iPReLU, dr_rate=dr_rate, l2_reg=l2_reg)    after_Conv_3 = fCreateVNet_Block(after_DownConv_2, kernelnumber[2], type=fgetLayerNumConv(), l2_reg=l2_reg)    after_DownConv_3 = fCreateVNet_DownConv_Block(after_Conv_3, after_Conv_3._keras_shape[1], Strides[2],                                                   iPReLU=iPReLU, dr_rate=dr_rate, l2_reg=l2_reg)    # fully convolution over the FM from the deepest level    dropout_out1 = Dropout(dr_rate)(after_DownConv_3)    fclayer1 = Conv3D(2,                       kernel_size=(1,1,1),                       kernel_initializer='he_normal',                       weights=None,                       padding='valid',                       strides=(1, 1, 1),                       kernel_regularizer=l1_l2(l1_reg, l2_reg),                       )(dropout_out1)    fclayer1 = GlobalAveragePooling3D()(fclayer1)        # Upsample FM from the deepest level, add with FM from level 2,     UpedFM_Level3 = Conv3DTranspose(filters=97, kernel_size=(3,3,1), strides=(2,2,1), padding='same')(after_DownConv_3)    conbined_FM_Level23 = add([UpedFM_Level3, after_DownConv_2])        fclayer2 = Conv3D(2,                       kernel_size=(1,1,1),                       kernel_initializer='he_normal',                       weights=None,                       padding='valid',                       strides=(1, 1, 1),                       kernel_regularizer=l1_l2(l1_reg, l2_reg),                       )(conbined_FM_Level23)    fclayer2 = GlobalAveragePooling3D()(fclayer2)    # combine the two predictions using average    fcl_aver = average([fclayer1, fclayer2])    predict = Activation('softmax')(fcl_aver)    cnn_fcl_msfm = Model(inputs=inp, outputs=predict)    return cnn_fcl_msfm 
开发者ID:thomaskuestner,项目名称:CNNArt,代码行数:55,代码来源:MSnetworks.py


万事OK自学网:51自学网_软件自学网_CAD自学网自学excel、自学PS、自学CAD、自学C语言、自学css3实例,是一个通过网络自主学习工作技能的自学平台,网友喜欢的软件自学网站。