您当前的位置:首页 > IT编程 > Keras
| C语言 | Java | VB | VC | python | Android | TensorFlow | C++ | oracle | 学术与代码 | cnn卷积神经网络 | gnn | 图像修复 | Keras | 数据集 | Neo4j | 自然语言处理 | 深度学习 | 医学CAD | 医学影像 | 超参数 | pointnet | pytorch | 异常检测 | Transformers | 情感分类 | 知识图谱 |

自学教程:Python layers.ZeroPadding3D方法代码示例

51自学网 2020-12-01 11:09:17
  Keras
这篇教程Python layers.ZeroPadding3D方法代码示例写得很实用,希望能帮到您。

本文整理汇总了Python中keras.layers.ZeroPadding3D方法的典型用法代码示例。如果您正苦于以下问题:Python layers.ZeroPadding3D方法的具体用法?Python layers.ZeroPadding3D怎么用?Python layers.ZeroPadding3D使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在模块keras.layers的用法示例。

在下文中一共展示了layers.ZeroPadding3D方法的6个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于我们的系统推荐出更棒的Python代码示例。

示例1: test_keras_import

# 需要导入模块: from keras import layers [as 别名]# 或者: from keras.layers import ZeroPadding3D [as 别名]def test_keras_import(self):        # Pad 1D        model = Sequential()        model.add(ZeroPadding1D(2, input_shape=(224, 3)))        model.add(Conv1D(32, 7, strides=2))        model.build()        self.pad_test(model, 'pad_w', 2)        # Pad 2D        model = Sequential()        model.add(ZeroPadding2D(2, input_shape=(224, 224, 3)))        model.add(Conv2D(32, 7, strides=2))        model.build()        self.pad_test(model, 'pad_w', 2)        # Pad 3D        model = Sequential()        model.add(ZeroPadding3D(2, input_shape=(224, 224, 224, 3)))        model.add(Conv3D(32, 7, strides=2))        model.build()        self.pad_test(model, 'pad_w', 2)# ********** Export json tests **********# ********** Data Layers Test ********** 
开发者ID:Cloud-CV,项目名称:Fabrik,代码行数:26,代码来源:test_views.py


示例2: pad_to_multiple

# 需要导入模块: from keras import layers [as 别名]# 或者: from keras.layers import ZeroPadding3D [as 别名]def pad_to_multiple(x, block_shape):    ori_shape = K.int_shape(x)    pad_t = ori_shape[1] % block_shape[0]    pad_f = ori_shape[2] % block_shape[1]    padding=((0, 0), (0, pad_t), (0, pad_f))        new_x = L.ZeroPadding3D(padding=padding)(x)    return new_x 
开发者ID:BreezeWhite,项目名称:Music-Transcription-with-Semantic-Segmentation,代码行数:12,代码来源:attn_utils.py


示例3: c3d

# 需要导入模块: from keras import layers [as 别名]# 或者: from keras.layers import ZeroPadding3D [as 别名]def c3d(self):        """        Build a 3D convolutional network, aka C3D.            https://arxiv.org/pdf/1412.0767.pdf        With thanks:            https://gist.github.com/albertomontesg/d8b21a179c1e6cca0480ebdf292c34d2        """        model = Sequential()        # 1st layer group        model.add(Conv3D(64, 3, 3, 3, activation='relu',                         border_mode='same', name='conv1',                         subsample=(1, 1, 1),                         input_shape=self.input_shape))        model.add(MaxPooling3D(pool_size=(1, 2, 2), strides=(1, 2, 2),                               border_mode='valid', name='pool1'))        # 2nd layer group        model.add(Conv3D(128, 3, 3, 3, activation='relu',                         border_mode='same', name='conv2',                         subsample=(1, 1, 1)))        model.add(MaxPooling3D(pool_size=(2, 2, 2), strides=(2, 2, 2),                               border_mode='valid', name='pool2'))        # 3rd layer group        model.add(Conv3D(256, 3, 3, 3, activation='relu',                         border_mode='same', name='conv3a',                         subsample=(1, 1, 1)))        model.add(Conv3D(256, 3, 3, 3, activation='relu',                         border_mode='same', name='conv3b',                         subsample=(1, 1, 1)))        model.add(MaxPooling3D(pool_size=(2, 2, 2), strides=(2, 2, 2),                               border_mode='valid', name='pool3'))        # 4th layer group        model.add(Conv3D(512, 3, 3, 3, activation='relu',                         border_mode='same', name='conv4a',                         subsample=(1, 1, 1)))        model.add(Conv3D(512, 3, 3, 3, activation='relu',                         border_mode='same', name='conv4b',                         subsample=(1, 1, 1)))        model.add(MaxPooling3D(pool_size=(2, 2, 2), strides=(2, 2, 2),                               border_mode='valid', name='pool4'))        # 5th layer group        model.add(Conv3D(512, 3, 3, 3, activation='relu',                         border_mode='same', name='conv5a',                         subsample=(1, 1, 1)))        model.add(Conv3D(512, 3, 3, 3, activation='relu',                         border_mode='same', name='conv5b',                         subsample=(1, 1, 1)))        model.add(ZeroPadding3D(padding=(0, 1, 1)))        model.add(MaxPooling3D(pool_size=(2, 2, 2), strides=(2, 2, 2),                               border_mode='valid', name='pool5'))        model.add(Flatten())        # FC layers group        model.add(Dense(4096, activation='relu', name='fc6'))        model.add(Dropout(0.5))        model.add(Dense(4096, activation='relu', name='fc7'))        model.add(Dropout(0.5))        model.add(Dense(self.nb_classes, activation='softmax'))        return model 
开发者ID:harvitronix,项目名称:five-video-classification-methods,代码行数:63,代码来源:models.py


示例4: multihead_attention

# 需要导入模块: from keras import layers [as 别名]# 或者: from keras.layers import ZeroPadding3D [as 别名]def multihead_attention(x, out_channel=64, d_model=32, n_heads=8, query_shape=(128, 24), memory_flange=(8, 8)):    q = Conv2D(d_model, (3, 3), strides=(1, 1), padding="same", name="gen_q_conv")(x)    k = Conv2D(d_model, (3, 3), strides=(1, 1), padding="same", name="gen_k_conv")(x)    v = Conv2D(d_model, (3, 3), strides=(1, 1), padding="same", name="gen_v_conv")(x)    q = split_heads_2d(q, n_heads)    k = split_heads_2d(k, n_heads)    v = split_heads_2d(v, n_heads)    k_depth_per_head = d_model // n_heads    q *= k_depth_per_head**-0.5        """    # local attetion 2d    v_shape = K.int_shape(v)    q = pad_to_multiple(q, query_shape)    k = pad_to_multiple(k, query_shape)    v = pad_to_multiple(v, query_shape)    paddings = ((0, 0), (memory_flange[0], memory_flange[1]), (memory_flange[0], memory_flange[1]))    k = L.ZeroPadding3D(padding=paddings)(k)    v = L.ZeroPadding3D(padding=paddings)(v)        # Set up query blocks    q_indices = gather_indices_2d(q, query_shape, query_shape)    q_new = gather_blocks_2d(q, q_indices)    # Set up key and value blocks    memory_shape = (query_shape[0] + 2*memory_flange[0],                    query_shape[1] + 2*memory_flange[1])    k_and_v_indices = gather_indices_2d(k, memory_shape, query_shape)    k_new = gather_blocks_2d(k, k_and_v_indices)    v_new = gather_blocks_2d(v, k_and_v_indices)    output = dot_attention(q_new, k_new, v_new)    # Put output back into original shapes    padded_shape = K.shape(q)    output = scatter_blocks_2d(output, q_indices, padded_shape)     # Remove padding    output = K.slice(output, [0, 0, 0, 0, 0], [-1, -1, v_shape[2], v_shape[3], -1])    """    output = local_attention_2d(q, k, v, query_shape=query_shape, memory_flange=memory_flange)        output = combine_heads_2d(output)    output = Conv2D(out_channel, (3, 3), strides=(1, 1), padding="same", use_bias=False)(output)        return output 
开发者ID:BreezeWhite,项目名称:Music-Transcription-with-Semantic-Segmentation,代码行数:53,代码来源:model_attn.py


示例5: build

# 需要导入模块: from keras import layers [as 别名]# 或者: from keras.layers import ZeroPadding3D [as 别名]def build(video_shape, audio_spectrogram_size):		model = Sequential()		model.add(ZeroPadding3D(padding=(1, 2, 2), name='zero1', input_shape=video_shape))		model.add(Convolution3D(32, (3, 5, 5), strides=(1, 2, 2), kernel_initializer='he_normal', name='conv1'))		model.add(BatchNormalization())		model.add(LeakyReLU())		model.add(MaxPooling3D(pool_size=(1, 2, 2), strides=(1, 2, 2), name='max1'))		model.add(Dropout(0.25))		model.add(ZeroPadding3D(padding=(1, 2, 2), name='zero2'))		model.add(Convolution3D(64, (3, 5, 5), strides=(1, 1, 1), kernel_initializer='he_normal', name='conv2'))		model.add(BatchNormalization())		model.add(LeakyReLU())		model.add(MaxPooling3D(pool_size=(1, 2, 2), strides=(1, 2, 2), name='max2'))		model.add(Dropout(0.25))		model.add(ZeroPadding3D(padding=(1, 1, 1), name='zero3'))		model.add(Convolution3D(128, (3, 3, 3), strides=(1, 1, 1), kernel_initializer='he_normal', name='conv3'))		model.add(BatchNormalization())		model.add(LeakyReLU())		model.add(MaxPooling3D(pool_size=(1, 2, 2), strides=(1, 2, 2), name='max3'))		model.add(Dropout(0.25))		model.add(TimeDistributed(Flatten(), name='time'))		model.add(Dense(1024, kernel_initializer='he_normal', name='dense1'))		model.add(BatchNormalization())		model.add(LeakyReLU())		model.add(Dropout(0.25))		model.add(Dense(1024, kernel_initializer='he_normal', name='dense2'))		model.add(BatchNormalization())		model.add(LeakyReLU())		model.add(Dropout(0.25))		model.add(Flatten())		model.add(Dense(2048, kernel_initializer='he_normal', name='dense3'))		model.add(BatchNormalization())		model.add(LeakyReLU())		model.add(Dropout(0.25))		model.add(Dense(2048, kernel_initializer='he_normal', name='dense4'))		model.add(BatchNormalization())		model.add(LeakyReLU())		model.add(Dropout(0.25))		model.add(Dense(audio_spectrogram_size, name='output'))		model.summary()		return VideoToSpeechNet(model) 
开发者ID:avivga,项目名称:cocktail-party,代码行数:55,代码来源:network.py


示例6: pooling

# 需要导入模块: from keras import layers [as 别名]# 或者: from keras.layers import ZeroPadding3D [as 别名]def pooling(layer, layer_in, layerId, tensor=True):    poolMap = {        ('1D', 'MAX'): MaxPooling1D,        ('2D', 'MAX'): MaxPooling2D,        ('3D', 'MAX'): MaxPooling3D,        ('1D', 'AVE'): AveragePooling1D,        ('2D', 'AVE'): AveragePooling2D,        ('3D', 'AVE'): AveragePooling3D,    }    out = {}    layer_type = layer['params']['layer_type']    pool_type = layer['params']['pool']    padding = get_padding(layer)    if (layer_type == '1D'):        strides = layer['params']['stride_w']        kernel = layer['params']['kernel_w']        if (padding == 'custom'):            p_w = layer['params']['pad_w']            out[layerId + 'Pad'] = ZeroPadding1D(padding=p_w)(*layer_in)            padding = 'valid'            layer_in = [out[layerId + 'Pad']]    elif (layer_type == '2D'):        strides = (layer['params']['stride_h'], layer['params']['stride_w'])        kernel = (layer['params']['kernel_h'], layer['params']['kernel_w'])        if (padding == 'custom'):            p_h, p_w = layer['params']['pad_h'], layer['params']['pad_w']            out[layerId + 'Pad'] = ZeroPadding2D(padding=(p_h, p_w))(*layer_in)            padding = 'valid'            layer_in = [out[layerId + 'Pad']]    else:        strides = (layer['params']['stride_h'], layer['params']['stride_w'],                   layer['params']['stride_d'])        kernel = (layer['params']['kernel_h'], layer['params']['kernel_w'],                  layer['params']['kernel_d'])        if (padding == 'custom'):            p_h, p_w, p_d = layer['params']['pad_h'], layer['params']['pad_w'],/                layer['params']['pad_d']            out[layerId +                'Pad'] = ZeroPadding3D(padding=(p_h, p_w, p_d))(*layer_in)            padding = 'valid'            layer_in = [out[layerId + 'Pad']]    # Note - figure out a permanent fix for padding calculation of layers    # in case padding is given in layer attributes    # if ('padding' in layer['params']):    #    padding = layer['params']['padding']    out[layerId] = poolMap[(layer_type, pool_type)](        pool_size=kernel, strides=strides, padding=padding)    if tensor:        out[layerId] = out[layerId](*layer_in)    return out# ********** Locally-connected Layers ********** 
开发者ID:Cloud-CV,项目名称:Fabrik,代码行数:55,代码来源:layers_export.py


万事OK自学网:51自学网_软件自学网_CAD自学网自学excel、自学PS、自学CAD、自学C语言、自学css3实例,是一个通过网络自主学习工作技能的自学平台,网友喜欢的软件自学网站。