您当前的位置:首页 > IT编程 > Keras
| C语言 | Java | VB | VC | python | Android | TensorFlow | C++ | oracle | 学术与代码 | cnn卷积神经网络 | gnn | 图像修复 | Keras | 数据集 | Neo4j | 自然语言处理 | 深度学习 | 医学CAD | 医学影像 | 超参数 | pointnet | pytorch | 异常检测 | Transformers | 情感分类 | 知识图谱 |

自学教程:Python layers.Convolution3D方法代码示例

51自学网 2020-12-01 11:09:17
  Keras
这篇教程Python layers.Convolution3D方法代码示例写得很实用,希望能帮到您。

本文整理汇总了Python中keras.layers.Convolution3D方法的典型用法代码示例。如果您正苦于以下问题:Python layers.Convolution3D方法的具体用法?Python layers.Convolution3D怎么用?Python layers.Convolution3D使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在模块keras.layers的用法示例。

在下文中一共展示了layers.Convolution3D方法的13个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于我们的系统推荐出更棒的Python代码示例。

示例1: conv_block

# 需要导入模块: from keras import layers [as 别名]# 或者: from keras.layers import Convolution3D [as 别名]def conv_block(x, nb_filter, nb0, nb1, nb2, border_mode='same', subsample=(1, 1, 1), bias=True, batch_norm=False):        if K.image_dim_ordering() == "th":        channel_axis = 1    else:        channel_axis = -1    x = Convolution3D(nb_filter, nb0, nb1, nb2, subsample=subsample, border_mode=border_mode, bias=bias)(x)    if batch_norm:        assert not bias        x = BatchNormalization(axis=channel_axis)(x)    else:        assert bias    x = Activation('relu')(x)    return x 
开发者ID:xulabs,项目名称:aitom,代码行数:19,代码来源:auto_classifier_model.py


示例2: dsrff3D

# 需要导入模块: from keras import layers [as 别名]# 或者: from keras.layers import Convolution3D [as 别名]def dsrff3D(image_size, num_labels):    num_channels=1    inputs = Input(shape = (image_size, image_size, image_size, num_channels))    # modified VGG19 architecture    bn_axis = 3    m = Convolution3D(32, 3, 3, 3, activation='relu', border_mode='same')(inputs)        m = Convolution3D(32, 3, 3, 3, activation='relu', border_mode='same')(m)    m = MaxPooling3D(pool_size=(2, 2, 2), strides=(2, 2, 2))(m)    m = Convolution3D(64, 3, 3, 3, activation='relu', border_mode='same')(m)        m = Convolution3D(64, 3, 3, 3, activation='relu', border_mode='same')(m)    m = MaxPooling3D(pool_size=(2, 2, 2), strides=(2, 2, 2))(m)    m = Flatten(name='flatten')(m)    m = Dense(512, activation='relu', name='fc1')(m)    m = Dense(512, activation='relu', name='fc2')(m)    m = Dense(num_labels, activation='softmax')(m)    mod = KM.Model(inputs=inputs, outputs=m)    return mod 
开发者ID:xulabs,项目名称:aitom,代码行数:24,代码来源:subdivide.py


示例3: conv_block

# 需要导入模块: from keras import layers [as 别名]# 或者: from keras.layers import Convolution3D [as 别名]def conv_block(x, nb_filter, nb0, nb1, nb2, border_mode='same', subsample=(1, 1, 1), bias=True, batch_norm=False):    from keras.layers import Input, Dense, Convolution3D, MaxPooling3D, UpSampling3D, Reshape, Flatten, Activation    from keras.layers.normalization import BatchNormalization    from keras import backend as K    if K.image_dim_ordering() == "th":        channel_axis = 1    else:        channel_axis = -1    x = Convolution3D(nb_filter, nb0, nb1, nb2, subsample=subsample, border_mode=border_mode, bias=bias)(x)    if batch_norm:        assert not bias        x = BatchNormalization(axis=channel_axis)(x)    else:        assert bias    x = Activation('relu')(x)    return x 
开发者ID:xulabs,项目名称:aitom,代码行数:22,代码来源:seg_util.py


示例4: res_block

# 需要导入模块: from keras import layers [as 别名]# 或者: from keras.layers import Convolution3D [as 别名]def res_block(input_tensor, nb_filters=16, block=0, subsample_factor=1):    subsample = (subsample_factor, subsample_factor, subsample_factor)    x = BatchNormalization(axis=4)(input_tensor)    x = Activation('relu')(x)    x = Convolution3D(nb_filters, 3, 3, 3, subsample=subsample, border_mode='same')(x)    x = BatchNormalization(axis=4)(x)    x = Activation('relu')(x)    x = Convolution3D(nb_filters, 3, 3, 3, subsample=(1, 1, 1), border_mode='same')(x)    if subsample_factor > 1:        shortcut = Convolution3D(nb_filters, 1, 1, 1, subsample=subsample, border_mode='same')(input_tensor)    else:        shortcut = input_tensor    x = merge([x, shortcut], mode='sum')    return x 
开发者ID:mdai,项目名称:kaggle-lung-cancer,代码行数:19,代码来源:m10a.py


示例5: inception3D

# 需要导入模块: from keras import layers [as 别名]# 或者: from keras.layers import Convolution3D [as 别名]def inception3D(image_size, num_labels):    num_channels=1    inputs = Input(shape = (image_size, image_size, image_size, num_channels))    m = Convolution3D(32, 5, 5, 5, subsample=(1, 1, 1), activation='relu', border_mode='valid', input_shape=())(inputs)    m = MaxPooling3D(pool_size=(2, 2, 2), strides=None, border_mode='same')(m)    # inception module 0    branch1x1 = Convolution3D(32, 1, 1, 1, subsample=(1, 1, 1), activation='relu', border_mode='same')(m)    branch3x3_reduce = Convolution3D(32, 1, 1, 1, subsample=(1, 1, 1), activation='relu', border_mode='same')(m)    branch3x3 = Convolution3D(64, 3, 3, 3, subsample=(1, 1, 1), activation='relu', border_mode='same')(branch3x3_reduce)    branch5x5_reduce = Convolution3D(16, 1, 1, 1, subsample=(1, 1, 1), activation='relu', border_mode='same')(m)    branch5x5 = Convolution3D(32, 5, 5, 5, subsample=(1, 1, 1), activation='relu', border_mode='same')(branch5x5_reduce)    branch_pool = MaxPooling3D(pool_size=(2, 2, 2), strides=(1, 1, 1), border_mode='same')(m)    branch_pool_proj = Convolution3D(32, 1, 1, 1, subsample=(1, 1, 1), activation='relu', border_mode='same')(branch_pool)    #m = merge([branch1x1, branch3x3, branch5x5, branch_pool_proj], mode='concat', concat_axis=-1)    from keras.layers import concatenate    m = concatenate([branch1x1, branch3x3, branch5x5, branch_pool_proj],axis=-1)    m = AveragePooling3D(pool_size=(2, 2, 2), strides=(1, 1, 1), border_mode='valid')(m)    m = Flatten()(m)    m = Dropout(0.7)(m)    # expliciately seperate Dense and Activation layers in order for projecting to structural feature space    m = Dense(num_labels, activation='linear')(m)    m = Activation('softmax')(m)    mod = KM.Model(input=inputs, output=m)    return mod 
开发者ID:xulabs,项目名称:aitom,代码行数:32,代码来源:subdivide.py


示例6: define_model

# 需要导入模块: from keras import layers [as 别名]# 或者: from keras.layers import Convolution3D [as 别名]def define_model(image_shape):    img_input = Input(shape=image_shape)    x = Convolution3D(16, 3, 3, 3, subsample=(1, 1, 1), border_mode='same')(img_input)    x = res_block(x, nb_filters=16, block=0, subsample_factor=1)    x = res_block(x, nb_filters=16, block=0, subsample_factor=1)    x = res_block(x, nb_filters=16, block=0, subsample_factor=1)    x = res_block(x, nb_filters=32, block=1, subsample_factor=2)    x = res_block(x, nb_filters=32, block=1, subsample_factor=1)    x = res_block(x, nb_filters=32, block=1, subsample_factor=1)    x = res_block(x, nb_filters=64, block=2, subsample_factor=2)    x = res_block(x, nb_filters=64, block=2, subsample_factor=1)    x = res_block(x, nb_filters=64, block=2, subsample_factor=1)    x = res_block(x, nb_filters=64, block=2, subsample_factor=1)    x = res_block(x, nb_filters=128, block=3, subsample_factor=2)    x = res_block(x, nb_filters=128, block=3, subsample_factor=1)    x = res_block(x, nb_filters=128, block=3, subsample_factor=1)    x = res_block(x, nb_filters=128, block=3, subsample_factor=1)    x = res_block(x, nb_filters=256, block=4, subsample_factor=2)    x = res_block(x, nb_filters=256, block=4, subsample_factor=1)    x = res_block(x, nb_filters=256, block=4, subsample_factor=1)    x = res_block(x, nb_filters=256, block=4, subsample_factor=1)    x = BatchNormalization(axis=4)(x)    x = Activation('relu')(x)    x = AveragePooling3D(pool_size=(3, 3, 3), strides=(2, 2, 2), border_mode='valid')(x)    x = Flatten()(x)    x = Dense(1, activation='sigmoid', name='predictions')(x)    model = Model(img_input, x)    model.compile(optimizer='adam', loss='binary_crossentropy', metrics=['accuracy', 'precision', 'recall', 'fmeasure'])    model.summary()    return model 
开发者ID:mdai,项目名称:kaggle-lung-cancer,代码行数:41,代码来源:m10a.py


示例7: define_model

# 需要导入模块: from keras import layers [as 别名]# 或者: from keras.layers import Convolution3D [as 别名]def define_model(image_shape):    img_input = Input(shape=image_shape)    x = Convolution3D(16, 5, 5, 5, subsample=(1, 1, 1), border_mode='same')(img_input)    x = res_block(x, nb_filters=16, block=0, subsample_factor=1)    x = res_block(x, nb_filters=16, block=0, subsample_factor=1)    x = res_block(x, nb_filters=16, block=0, subsample_factor=1)    x = res_block(x, nb_filters=32, block=1, subsample_factor=2)    x = res_block(x, nb_filters=32, block=1, subsample_factor=1)    x = res_block(x, nb_filters=32, block=1, subsample_factor=1)    x = res_block(x, nb_filters=64, block=2, subsample_factor=2)    x = res_block(x, nb_filters=64, block=2, subsample_factor=1)    x = res_block(x, nb_filters=64, block=2, subsample_factor=1)    x = res_block(x, nb_filters=128, block=3, subsample_factor=2)    x = res_block(x, nb_filters=128, block=3, subsample_factor=1)    x = res_block(x, nb_filters=128, block=3, subsample_factor=1)    x = BatchNormalization(axis=4)(x)    x = Activation('relu')(x)    x = AveragePooling3D(pool_size=(4, 4, 8))(x)    x = Flatten()(x)    x = Dense(1, activation='sigmoid', name='predictions')(x)    model = Model(img_input, x)    model.compile(optimizer='adam', loss='binary_crossentropy', metrics=['accuracy', 'precision', 'recall', 'fmeasure'])    model.summary()    return model 
开发者ID:mdai,项目名称:kaggle-lung-cancer,代码行数:34,代码来源:sd01a.py


示例8: define_model

# 需要导入模块: from keras import layers [as 别名]# 或者: from keras.layers import Convolution3D [as 别名]def define_model():    img_input = Input(shape=(32, 32, 64, 1))    x = Convolution3D(16, 5, 5, 5, subsample=(1, 1, 1), border_mode='same')(img_input)    x = res_block(x, nb_filters=16, block=0, subsample_factor=1)    x = res_block(x, nb_filters=16, block=0, subsample_factor=1)    x = res_block(x, nb_filters=16, block=0, subsample_factor=1)    x = res_block(x, nb_filters=32, block=1, subsample_factor=2)    x = res_block(x, nb_filters=32, block=1, subsample_factor=1)    x = res_block(x, nb_filters=32, block=1, subsample_factor=1)    x = res_block(x, nb_filters=64, block=2, subsample_factor=2)    x = res_block(x, nb_filters=64, block=2, subsample_factor=1)    x = res_block(x, nb_filters=64, block=2, subsample_factor=1)    x = res_block(x, nb_filters=128, block=3, subsample_factor=2)    x = res_block(x, nb_filters=128, block=3, subsample_factor=1)    x = res_block(x, nb_filters=128, block=3, subsample_factor=1)    x = BatchNormalization(axis=4)(x)    x = Activation('relu')(x)    x = AveragePooling3D(pool_size=(4, 4, 8))(x)    x = Flatten()(x)    x = Dense(1, activation='sigmoid', name='predictions')(x)    model = Model(img_input, x)    model.compile(optimizer='adam', loss='binary_crossentropy')    return model 
开发者ID:mdai,项目名称:kaggle-lung-cancer,代码行数:34,代码来源:sd01a.py


示例9: build

# 需要导入模块: from keras import layers [as 别名]# 或者: from keras.layers import Convolution3D [as 别名]def build():        model = Sequential()        # Conv layer 1        model.add(Convolution3D(            input_shape = (14,32,32,32),            filters=64,            kernel_size=5,            padding='valid',     # Padding method            data_format='channels_first',        ))        model.add(LeakyReLU(alpha = 0.1))        # Dropout 1        model.add(Dropout(0.2))        # Conv layer 2        model.add(Convolution3D(            filters=64,            kernel_size=3,            padding='valid',     # Padding method            data_format='channels_first',        ))        model.add(LeakyReLU(alpha = 0.1))        # Maxpooling 1        model.add(MaxPooling3D(            pool_size=(2,2,2),            strides=None,            padding='valid',    # Padding method            data_format='channels_first'        ))        # Dropout 2        model.add(Dropout(0.4))        # FC 1        model.add(Flatten())        model.add(Dense(128)) # TODO changed to 64 for the CAM        model.add(LeakyReLU(alpha = 0.1))        # Dropout 3        model.add(Dropout(0.4))        # Fully connected layer 2 to shape (2) for 2 classes        model.add(Dense(2))        model.add(Activation('softmax'))        return model 
开发者ID:pulimeng,项目名称:DeepDrug3D,代码行数:42,代码来源:deepdrug3d.py


示例10: srcnn

# 需要导入模块: from keras import layers [as 别名]# 或者: from keras.layers import Convolution3D [as 别名]def srcnn(input_shape=(33,33,110,1)):    #for ROSIS  sensor    model = Sequential()    model.add(Convolution3D(64, 9, 9, 7, input_shape=input_shape, activation='relu'))    model.add(Convolution3D(32, 1, 1, 1, activation='relu'))    model.add(Convolution3D(9, 1, 1, 1, activation='relu'))    model.add(Convolution3D(1, 5, 5, 3))    model.compile(Adam(lr=0.00005), 'mse')    return model 
开发者ID:MeiShaohui,项目名称:Hyperspectral-Image-Spatial-Super-Resolution-via-3D-Full-Convolutional-Neural-Network,代码行数:11,代码来源:network3d.py


示例11: auto_classifier_model

# 需要导入模块: from keras import layers [as 别名]# 或者: from keras.layers import Convolution3D [as 别名]def auto_classifier_model(img_shape, encoding_dim=128, NUM_CHANNELS=1, num_of_class=2):    input_shape = (None, img_shape[0], img_shape[1], img_shape[2], NUM_CHANNELS)    mask_shape = (None, num_of_class)    # use relu activation for hidden layer to guarantee non-negative outputs are passed to the max pooling layer. In such case, as long as the output layer is linear activation, the network can still accomodate negative image intendities, just matter of shift back using the bias term    input_img = Input(shape=input_shape[1:])    mask = Input(shape=mask_shape[1:])    x = input_img    x = conv_block(x, 32, 3, 3, 3)    x = MaxPooling3D((2, 2, 2), padding ='same')(x)    x = conv_block(x, 32, 3, 3, 3)    x = MaxPooling3D((2, 2, 2), padding ='same')(x)    encoder_conv_shape = [_.value for _ in  x.get_shape()]          # x.get_shape() returns a list of tensorflow.python.framework.tensor_shape.Dimension objects    x = Flatten()(x)    encoded = Dense(encoding_dim, activation='relu', activity_regularizer=regularizers.l1(10e-5))(x)    encoder = Model(inputs=input_img, outputs=encoded)    x = BatchNormalization()(x)    x = Dense(encoding_dim, activation='relu', activity_regularizer=regularizers.l1(10e-5))(x)    x = Dense(128, activation = 'relu')(x)    x = Dense(num_of_class, activation = 'softmax')(x)        prob = x    # classifier output    classifier = Model(inputs=input_img, outputs=prob)    input_img_decoder = Input(shape=encoder.output_shape[1:])    x = input_img_decoder    x = Dense(np.prod(encoder_conv_shape[1:]), activation='relu')(x)    x = Reshape(encoder_conv_shape[1:])(x)    x = UpSampling3D((2, 2, 2))(x)    x = conv_block(x, 32, 3, 3, 3)    x = UpSampling3D((2, 2, 2))(x)    x = conv_block(x, 32, 3, 3, 3)    x = Convolution3D(1, (3, 3, 3), activation='linear', padding ='same')(x)    decoded = x    # autoencoder output    decoder = Model(inputs=input_img_decoder, outputs=decoded)        autoencoder = Sequential()    for l in encoder.layers:            autoencoder.add(l)    last = None    for l in decoder.layers:        last = l            autoencoder.add(l)    decoded = autoencoder(input_img)    auto_classifier = Model(inputs=input_img, outputs=[decoded, prob])    auto_classifier.summary()    return auto_classifier 
开发者ID:xulabs,项目名称:aitom,代码行数:63,代码来源:auto_classifier_model.py


示例12: get_net

# 需要导入模块: from keras import layers [as 别名]# 或者: from keras.layers import Convolution3D [as 别名]def get_net(input_shape=(CUBE_SIZE, CUBE_SIZE, CUBE_SIZE, 1), load_weight_path=None, features=False, mal=False) -> Model:    inputs = Input(shape=input_shape, name="input_1")    x = inputs    x = AveragePooling3D(pool_size=(2, 1, 1), strides=(2, 1, 1), border_mode="same")(x)    x = Convolution3D(64, 3, 3, 3, activation='relu', border_mode='same', name='conv1', subsample=(1, 1, 1))(x)    x = MaxPooling3D(pool_size=(1, 2, 2), strides=(1, 2, 2), border_mode='valid', name='pool1')(x)    # 2nd layer group    x = Convolution3D(128, 3, 3, 3, activation='relu', border_mode='same', name='conv2', subsample=(1, 1, 1))(x)    x = MaxPooling3D(pool_size=(2, 2, 2), strides=(2, 2, 2), border_mode='valid', name='pool2')(x)    if USE_DROPOUT:        x = Dropout(p=0.3)(x)    # 3rd layer group    x = Convolution3D(256, 3, 3, 3, activation='relu', border_mode='same', name='conv3a', subsample=(1, 1, 1))(x)    x = Convolution3D(256, 3, 3, 3, activation='relu', border_mode='same', name='conv3b', subsample=(1, 1, 1))(x)    x = MaxPooling3D(pool_size=(2, 2, 2), strides=(2, 2, 2), border_mode='valid', name='pool3')(x)    if USE_DROPOUT:        x = Dropout(p=0.4)(x)    # 4th layer group    x = Convolution3D(512, 3, 3, 3, activation='relu', border_mode='same', name='conv4a', subsample=(1, 1, 1))(x)    x = Convolution3D(512, 3, 3, 3, activation='relu', border_mode='same', name='conv4b', subsample=(1, 1, 1),)(x)    x = MaxPooling3D(pool_size=(2, 2, 2), strides=(2, 2, 2), border_mode='valid', name='pool4')(x)    if USE_DROPOUT:        x = Dropout(p=0.5)(x)    last64 = Convolution3D(64, 2, 2, 2, activation="relu", name="last_64")(x)    out_class = Convolution3D(1, 1, 1, 1, activation="sigmoid", name="out_class_last")(last64)    out_class = Flatten(name="out_class")(out_class)    out_malignancy = Convolution3D(1, 1, 1, 1, activation=None, name="out_malignancy_last")(last64)    out_malignancy = Flatten(name="out_malignancy")(out_malignancy)    model = Model(input=inputs, output=[out_class, out_malignancy])    if load_weight_path is not None:        model.load_weights(load_weight_path, by_name=False)    model.compile(optimizer=SGD(lr=LEARN_RATE, momentum=0.9, nesterov=True), loss={"out_class": "binary_crossentropy", "out_malignancy": mean_absolute_error}, metrics={"out_class": [binary_accuracy, binary_crossentropy], "out_malignancy": mean_absolute_error})    if features:        model = Model(input=inputs, output=[last64])    model.summary(line_length=140)    return model 
开发者ID:juliandewit,项目名称:kaggle_ndsb2017,代码行数:46,代码来源:step2_train_nodule_detector.py


示例13: build

# 需要导入模块: from keras import layers [as 别名]# 或者: from keras.layers import Convolution3D [as 别名]def build(video_shape, audio_spectrogram_size):		model = Sequential()		model.add(ZeroPadding3D(padding=(1, 2, 2), name='zero1', input_shape=video_shape))		model.add(Convolution3D(32, (3, 5, 5), strides=(1, 2, 2), kernel_initializer='he_normal', name='conv1'))		model.add(BatchNormalization())		model.add(LeakyReLU())		model.add(MaxPooling3D(pool_size=(1, 2, 2), strides=(1, 2, 2), name='max1'))		model.add(Dropout(0.25))		model.add(ZeroPadding3D(padding=(1, 2, 2), name='zero2'))		model.add(Convolution3D(64, (3, 5, 5), strides=(1, 1, 1), kernel_initializer='he_normal', name='conv2'))		model.add(BatchNormalization())		model.add(LeakyReLU())		model.add(MaxPooling3D(pool_size=(1, 2, 2), strides=(1, 2, 2), name='max2'))		model.add(Dropout(0.25))		model.add(ZeroPadding3D(padding=(1, 1, 1), name='zero3'))		model.add(Convolution3D(128, (3, 3, 3), strides=(1, 1, 1), kernel_initializer='he_normal', name='conv3'))		model.add(BatchNormalization())		model.add(LeakyReLU())		model.add(MaxPooling3D(pool_size=(1, 2, 2), strides=(1, 2, 2), name='max3'))		model.add(Dropout(0.25))		model.add(TimeDistributed(Flatten(), name='time'))		model.add(Dense(1024, kernel_initializer='he_normal', name='dense1'))		model.add(BatchNormalization())		model.add(LeakyReLU())		model.add(Dropout(0.25))		model.add(Dense(1024, kernel_initializer='he_normal', name='dense2'))		model.add(BatchNormalization())		model.add(LeakyReLU())		model.add(Dropout(0.25))		model.add(Flatten())		model.add(Dense(2048, kernel_initializer='he_normal', name='dense3'))		model.add(BatchNormalization())		model.add(LeakyReLU())		model.add(Dropout(0.25))		model.add(Dense(2048, kernel_initializer='he_normal', name='dense4'))		model.add(BatchNormalization())		model.add(LeakyReLU())		model.add(Dropout(0.25))		model.add(Dense(audio_spectrogram_size, name='output'))		model.summary()		return VideoToSpeechNet(model) 
开发者ID:avivga,项目名称:cocktail-party,代码行数:55,代码来源:network.py


万事OK自学网:51自学网_软件自学网_CAD自学网自学excel、自学PS、自学CAD、自学C语言、自学css3实例,是一个通过网络自主学习工作技能的自学平台,网友喜欢的软件自学网站。