import tensorflow as tf import numpy as np import math import timeit import matplotlib.pyplot as plt import matplotlib import os from keras.utils import np_utils from keras.models import Sequential from keras.layers import Dense, Dropout, Flatten, Conv2D, MaxPooling2D cifar10=tf.keras.datasets.cifar10.load_data() (x_img_train, y_label_train), (x_img_test, y_label_test) = cifar10 label_dict = {0:'airplane', 1:'automobile', 2:"bird", 3:"cat", 4:"deer", 5:"dog",6:"frog", 7:"horse", 8:"ship", 9:"truck"} x_img_train_normalize=x_img_train.astype('float32')/255 x_img_test_normalize=x_img_test.astype('float32')/255 y_label_train_OneHot=np_utils.to_categorical(y_label_train) y_label_test_OneHot=np_utils.to_categorical(y_label_test) model=Sequential() model.add(Conv2D(filters=32, kernel_size=(3,3), padding='same', input_shape=(32,32,3), activation='relu')) model.add(MaxPooling2D(pool_size=(2,2))) model.add(Dropout(0.25)) model.add(Conv2D(filters=64, kernel_size=(3,3), padding='same', activation='relu')) model.add(MaxPooling2D(pool_size=(2,2))) model.add(Dropout(0.25)) model.add(Conv2D(filters=128, kernel_size=(3,3), padding='same', activation='relu')) model.add(MaxPooling2D(pool_size=(2,2))) model.add(Dropout(0.25)) model.add(Conv2D(filters=256, kernel_size=(3,3), padding='same', activation='relu')) model.add(MaxPooling2D(pool_size=(2,2))) model.add(Dropout(0.25)) model.add(Flatten()) model.add(Dropout(0.25)) model.add(Dense(1024,activation='relu')) model.add(Dropout(0.25)) model.add(Dense(10,activation='softmax')) #查看模型摘要 print(model.summary())
训练模型,迭代50次:
model.compile(loss='categorical_crossentropy',optimizer='adam',metrics=['accuracy']) train_history = model.fit(x=x_img_train_normalize, y=y_label_train_OneHot, validation_split = 0.2, epochs=50, batch_size=256, verbose=2)
查看训练模型loss和accuracy:
def show_train_history(train_history,train,validation): plt.plot(train_history.history[train]) plt.plot(train_history.history[validation]) plt.title('Train History') plt.ylabel(train) plt.xlabel('Epoach') plt.legend(['train','validation'],loc='upper left') plt.show() show_train_history(train_history,'loss','val_loss') show_train_history(train_history,'accuracy','val_accuracy')
精度图像如下所示:
评估模型:
用测试集来验证模型好坏,50次迭代准确度为79.75%。可以继续调节卷积层,池化层,隐藏层,数据集批量大小,迭代次数来提高模型准确度。
scores=model.evaluate(x_img_test_normalize,y_label_test_OneHot) print(scores[1])
预测模型:
#预测第一个图片 prediction=np.argmax(model.predict(x_img_test_normalize[:1])) print('第一个图片预测值: ',label_dict[prediction]) print("第一个图片真实值: ",label_dict[np.argmax(y_label_test_OneHot[:1])])
#预测第二个图片 prediction=np.argmax(model.predict(x_img_test_normalize[1:2])) print('第一个图片预测值: ',label_dict[prediction]) print("第一个图片真实值: ",label_dict[np.argmax(y_label_test_OneHot[1:2])])