对于教师来说,'反思教学' 就是教师自觉地把自己的课堂教学实践, 作为认识对象而进行全面而深入的冷静思考和总结,对于九年级数学二次函数的应用的教学反思有哪些呢?接下来是51自学小编为大家带来的关于九年级数学二次函数的应用教学反思,希望会给大家带来帮助。 九年级数学二次函数的应用教学反思(一) 二次函数的应用是学习二次函数的图像与性质后,检验学生应用所学知识解决实际问题能力的一个综合考查,它是本章的难点。新的课程标准要求学生能通过对实际问题的情境的分析确定二次函数的表达式,体会其意义,能根据图像的性质解决简单的实际问题,而最大值问题是生活中利用二次函数知识解决最常见、最有实际应用价值的问题,它生活背景丰富,学生比较感兴趣。本节课通过学习求水流的最高点问题,引导学生将实际问题转化为数学模型,利用数学建模的思想去解决和函数有关的应用问题。此部分内容是学习一次函数及其应用后的巩固与延伸,又为高中乃至以后学习更多函数打下坚实的基础。 由于本节课是二次函数的应用问题,重在通过学习总结解决问题的方法,故而本节课以“启发探究式”为主线开展教学活动,以学生动手动脑探究为主,必要时加以小组合作讨论,充分调动学生学习积极性和主动性,突出学生的主体地位,达到“不但使学生学会,而且使学生会学”的目的。 不足之处:《数学课程标准》提出:教师不仅是学生的引导者,也是学生的合作者。教学中,要让学生通过自主讨论、交流,来探究学习中碰到的问题、难题,教师从中点拨、引导,并和学生一起学习探讨。在本节课的教学中,教师引导学生较多,没有完全放开让学生自主探究学习,获得新知;学生在数学学习中还是有较强的依赖性,教师要有意培养学生自主学习的能力。 教师要想在开放的课堂上具有灵活驾驭的能力,就需要在备课时尽量考虑周到,既要备教材,又要备学生,更需要教师具有丰富的科学文化知识,这样才能使我们的学生在轻松活跃的课堂上找到学习的乐趣与兴趣。 九年级数学二次函数的应用教学反思(二) 本节课的教学目标是:继续经历利用二次函数解决实际最值问题;会综合运用二次函数和其他数学知识解决如有关距离、利润等的函数最值问题;发展应用数学解决问题的能力,体会数学与生活的密切联系和数学的应用价值。 本 节课只有两个例题,第一个例题是有关距离问题,第二个例题是有关利润的问题。原计划本节课用一节课的时间,但是在实际操作过程中,第一个例题就用了一节课 的时间,所以本节课要用两个课时来上。首先是复习了函数的应用,问学生经过前面对二次函数学习,给他们留下最深刻的是什么?学生马上能想到二次函数的最 值,然后引导学生利用二次函数求只值问题应该注意的事项。1、根据实际问题求出函数解析式,求出自变良取值范围;2、把解析式化成配方式,或者把利用公式 来求出函数的顶点坐标。3、检查顶点的横坐标是否在自变量的取值范围内。 举例 有最大值还是最小值,什么时候能取到最大或者最小值?变化例子是否有最大或者最小值,什么时候取到最大或者最小值?这样做一方面巩固了最大值的取法,而且还为距离的最值问题做好铺垫。 例题的教学采取多媒体展示,根据提供的信息化出图形,引导学生观察,求距离可以根据勾股定理列出代数式。代数式是,问题转化为怎样求这个代数式的最小值。学生很自然想到,要使代数式的值最小,也就是被开方数要最小,也就想到转化为配方形式 ;解法二,利用公式求出。 对于第二个例题,引入的时候先回顾有关列利润的一元二次方程问题,经过市场调查,某种商品的进价为为每件6元,专卖店的每日固定成本为150元.当销售价为每件10元时,日均销售量为100件,单价每将低1元,日均销售量增加40件.要使利润500元,销售价应该定多少? 这样做就为利润问题列出函数解析式奠定了基础,主要的难点是从表格中提供的信息,总结出单价每增加一元,日均销售良就减少40瓶。根据这一规律,就不难列出y关于x的函数解析式。 引导学生思考,你认为商家要追求最大利润,销售价格是定的越低越好还是越高越好?让学生再次体会数学与生活的的密切联系和数学的应用价值。 九年级数学二次函数的应用教学反思(三) 二次函数是中学数学的重要内容,也是中考的热点。其中考试涉及的主要有考查二次函数的定义、图象与性质及应用等。在九年级的教学中,教师就要立足课堂,瞄准中考,研究中考试题。近年来,二次函数的应用题目不断出现在各地中考题中,特别值得一提的是,有些源自课本中的例题或习题原型和变式。在日常教学时,注重对接,为中考做好铺垫,是我对这节二次函数解决实际问题实践探索课的期待。 二次函数应用题型一般情况下,解题思路不外乎建立平面直角坐标系,标出图象上的点的坐标,求图象解析式,利用图象解析式及性质,来解决最优化等实际问题。一开始我引导学生回忆二次函数的三种不同形式的解析式,即一般式、顶点式、交点式,并说出它们各自的性质如抛物线的开口方向,对称轴,顶点坐标,最大最小值,函数在对称轴两侧的增减性。结合华师大版教材教学内容,呈现习题27.2第5题,让学生分小组去试验探索解决问题。各小组很快就得出三个特殊点的坐标(0,0)(5,4)(10,0),并求出了抛物线的解析式,当然速度有快有慢,第二问,就是求当x=6时y的值,不少学生纷纷举手示意完成,我很高兴,也没细究每个同学的情况。继续按照预定方案,组织学生活动,开始对一道试题进行探究。 如图,有一个横截面为抛物线的桥洞,桥洞地面宽为8米,桥洞最高处距地面6米。现有一辆卡车,装载集装箱,箱宽3米,车与箱共高4.5米,请您计算一下,车辆能否通过桥洞。 对于这个问题,不少学生表情凝重,目光迷惘,思路不畅,不知从何处下手。我反复引导,几次提醒按例题的方法,从函数的图象上进行考虑,但就是没有人响应,探究几乎陷于停顿,让我大感意外,超乎我的想象。好在我尚能应付,便提问素有“小诸葛”之称的小明,你是怎样思考的?小明说,他也知道首先建立平面直角坐标系,但问题是不知道把坐标系原点建在哪里,更不知道卡车是如何穿过桥洞,是靠中间走,还是靠边通过?我一听,才恍然大悟。原来学生的认知和老师想象的不一样,加上生活经验较少,难怪学生会沉默不语。对于坐标系的建立方法,学生面对多种可能的选择,往往束手无策,根本原因就是老师不重视对学生思考水平的研究,导致以老师思维代替学生思维,造成学生思考与实践脱节。这就要求老师要从学生的实际出发,了解学生的学习状况,善于启发和引导,才能较好的达到教学目标。 本节课的设计初衷,原是让学生从具体的生活实践中,感知数学模型,达到从实际问题中抽象出数学模型,并用数学知识解决问题,同时让学生感知和体会一题多变的变式训练,增加对数学解题思想的认识。但在教学时,学生对一些常规知识的缺失突出的暴露出来。如利用三点坐标求二次函数解析式,学生解三元一次方程组感到困难等。 当我充满自信准备进行下一问时,有学生说,我还没得出答案呢?我说,你们小组不是展示过了,怎么你还不会呢?他说,我的解析式设y=ax2+bx+c,我代入得不出来,组长设的和我不一样。我告诉他,其实你用一般式同样可以做的很准,只不过速度稍慢一些,这就需要加强运算练习。下课后我一直在思考,学生越是基础差,那些好的方法他们就越难掌握。学起来既吃力有费气,这就需要在平常加强双基训练,每个学生都必须掌握好基本概念和基本技能。 看过九年级数学二次函数的应用教学反思的还看了:
1.九年级数学教学工作反思 2.九年级数学教学反思范文 3.初三数学教学反思范文 4.九年级数学实际问题与二次函数同步练习题
|