为即将到来的九年级数学的10月月考考试,教师们需要准备好的月考试卷内容供学生们复习,下面是51自学小编为大家带来的关于九年级数学10月月考试卷,希望会给大家带来帮助。 九年级数学10月月考试卷: 一、选择题(每题3分 共计30分) 1.下列各点中,在函数 的象上的是( ) A.(2,1) B.(-2,1) C.(2,-2) D.(1,2) 2.已知点P(x1,﹣2)、Q(x2,2)、R(x3,3)三点都在反比例函数y= 的象上,则下列关系正确的是( ). A.x1 3.若ab>0,则一次函数y=ax+b与反比例函数y= 在同一坐标系数中的大致象是( ) 4.已知∠1=∠2,那么添加下列一个条件后,仍无法判定△ABC ∽△ADE的是( ) A. = B. = C.∠B=∠D D.∠C=∠AED 5.已知△ABC和△DEF相似,且△ABC的三边长分别为3、4、5,如果△DEF的周长为6,那么下列选项不可能是△DEF一边长的是( ) A.1.5 B.2 C.2.5 D.3 6.两个反比例函数 和 在第一象限内的象依次是C1和C2,设点P在C1上, 轴于点C,交C2于点A, 轴于点D,交C2于点B,则四边形PAOB的面积为( ) A、2 B、 3 C、4 D、5 7.A、B、C、P、Q、甲、乙、丙、丁都是方格纸中的格点,如果△RPQ∽△ABC,那么点R应是甲、乙、丙、丁四点中的( ) A.甲 B.乙 C.丙 D.丁 8.已知:在△ABC中,BC=10,BC边上的高h=5,点E在边AB上,过点E作EF∥BC,交AC边于点F.点D为BC上一点,连接DE、DF.设点E到BC的距离为x,则△DEF的面积S关于x的函数象大致为( ) 9.在平面直角坐标系中,菱形ABOC的顶点O在坐标原点,边BO在x轴的负半轴上,∠BOC=60°,顶点C的坐标为(m,3 ),反比例函数 的像与菱形对角线AO交于D点,连接BD,当BD⊥x轴时,k的值是( ) A.6 B.-6 C.12 D.-12 10.在Rt△ABC内有边长分别为a,b,c的三个正方形,则a,b,c满足的关系式为( ) A.b=a+c B.b=ac C.b2=a2+c2 D.b=2a=2c 第II卷(非选择题) 二、填空题(每小题3分 共计24分) 11.已知反比例函数y= ,其象在第一、第三象限内,则k的值可为 .(写出满足条件的一个k的值即可). 12.在比例尺为1∶1 00 000的地上,量得甲、乙两地的距离是15cm,则两地的实际距离 km. 13.正方形ABOC的边长为2,反比例函数y= 过点A,则k的值是 . 14.小明在A时测得某树的影长为2 m,B时又测得该树的影长为8 m,若两次日照的光线互相垂直,则树的高度为_________m. 15.在△ABC中, , ,直线 // // , 与 之间距离是1, 与 之间距离是2.且 , , 分别经过点A, B,C,则边AC的长为 . 16.一只蚂蚁沿着边长为2的正方体表面从点A出发,经过3个面爬到点B,如果它运动的路径是最短的,则AC的长为 . 17.四边形OABC是矩形,ADEF是正方形,点A、D在x轴的正半轴上,点C在y轴的正半轴上,点F在AB上,点B、E在反比例函数 的象上,OA=1,OC=6,则正方形ADEF的边长为 . 18.在平面直角坐标系xOy中,已知直线l:y=﹣x﹣1,双曲线y= ,在l上取一点A1,过A1作x轴的垂线交双曲线与点B1,过B1作y轴的垂线交l于点A2,请继续操作并探究;过A2作x轴的垂线交双曲线于点B2,过B2作y轴的垂线交l于点A3,…,这样依次得到l上的点A1,A2,A3,…,An,…记点An的横坐标为an,若a1=2,则a2015= . 三、解答题(共计96分) 19.(9分)已知直线y=﹣3x与双曲线y= 交于点P (﹣1,n). (1)求m的值; (2)若点A ( , ),B( , )在双曲线y= 上,且 < <0,试比较 , 的大小. 20.(9分)已知:在△ABC中,D,E分别是AB,AC上一点,且∠AED =∠B.若AE=5,AB=9,CB=6. (1)求证:△ADE∽△ACB;(2)求ED的长. 21.(12分)已知反比例函数 的象经过点 ,一次函数 的象经过点 与点 ,且与反比例函数的象相交于另一点 . (1)分别求出反比例函数与一次函数的解析式;(2)求点 的坐标.(3)求三角形OAB的面 22.(12分)某测量工作人员与标杆顶端F、电视塔顶端在同一直线上,已知此人眼睛距地面1.6米,标杆为3.2米,且BC=1米,CD=5米,求电视塔的高ED。 23.(12分)甲、乙两家超市进行促销活动,甲超市采用“买100减50”的促销方式,即购买商品的总金额满100元但不足200元,少付50元;满200元但不足300元,少付100元;….乙超市采用“打6折”的促销方式,即顾客购买商品的总金额打6折. (1)若顾客在甲商场购买商品的总金额为x(100≤x<200)元,优惠后得到商家的优惠率为p(p= ),写出p与x之间的函数关系式,并说明p随x的变化情况; (2)王强同学认为:如果顾客购买商品的总金额超过100元,实际上甲超市采用“打5折”、乙超市采用“打6折”,那么当然选择甲超市购物.请你举例反驳; (3)品牌、质量、规格等都相同的某种商品,在甲乙两商场的标价都是x(300≤x<400)元,认为选择哪家商场购买商品花钱较少?请说明理由. 24.(14分)已知反比例函数y= (x>0,k是常数)的象经过点A(1,4),点B(m,n),其中m>1,AM⊥x轴,垂足为M,BN⊥y轴,垂足为N,AM与BN的交点为C. (1)写出反比例函数解析式; (2)求证:△ACB∽△NOM; (3)若△ACB与△NOM的相似比为2,求出B点的坐标及AB所在直线的解析式. 25.(14分)如(1),直线y=k1 x+b与反比例函数y= 的象交于点A(1,6),B(a,3)两点. (1)求k1、k2的值; (2)如(1),等腰梯形OBCD中,BC∥OD,OB=CD,OD边在x轴上,过点C作CE⊥OD于点E,CE和反比例函数的象交于点F,当梯形OBCD的面积为12时,请判断FC和EF的大小,并说明理由; (3)如(2),已知点Q是CD的中点,在第(2)问的条件下,点P在x轴上,从原点O出发,沿x轴负方向运动,设四边形PCQE的面积为S1,△DEQ的面积为S2,当∠PCD=90°时,求P点坐标及S1:S2的值. 26.(14分)在矩形ABCD中,点P在边CD上,且与C、D不重合,过点A作AP的垂线与CB的延长线相交于点Q,连接PQ,M为PQ中点. (1)求证:△ADP∽△ABQ; (2)若AD=10,AB=20,点P在边CD上运动,设DP=x,BM2=y,求y与x的函数关系式,并求线段BM的最小值; (3)若AD=10,AB=a,DP=8,随着a的大小的变化,点M的位置也在变化.当点M落在矩形ABCD外部时,求a的取值范围. 九年级数学10月月考试卷答案: 1.B. 2.A. 3.B 4.B 5.D 6.B. 7.B. 8.D. 9.D 10.A 11.答案不唯一,只要符合k>2即可,如k=3. 12.15 13.-4. 14.4 15. 16. . 17.2 18.﹣ . 19.m=2; < 20. . 21.解:过A点作AH⊥ED,交FC于G,交ED于H. 由题意可得:△AFG∽△AEH, ∴ 即 , 解得:EH=9.6米. ∴ED=9.6+1.6=11.2米 22.(1)y=-2/x ,y=x+3 (2)B(-1,2) (3)1.5 23.(1)P= (100≤x<200),p随x的增大而减小;(2)当x=130时,在甲超市花130-50=80(元);在乙超市花130×0.6=78(元),(3)理由见解析. 24.(1)反比例函数解析式为y= ;(2)证明见解析.(3)B(3, ),解析式为y=- x+ . 25.(1)k1=-3,k2=6;(2)FC=EF;理由见解析.(3)P点坐标为(- ,0);S1:S2=11:2. 26.(1)证明见解析;(2)y= x2-20x+125(012.5. 看过九年级数学10月月考试卷的还看了:
1.九年级数学上册12月月考试卷 2.九年级英语上册10月月考试卷 3.九年级语文第一次月考模拟试卷及答案 4.九年级上册数学试卷及答案
|