随机变量的数学期望与方差是高考的重要考点, 你知道两者之间的关系吗?下面就由51自学小编和你说说吧。 数学期望与方差的关系 方差指一组数据中每个元素间的离散程度,方差小则离散程度小,反之则大. 期望值指一个人对某目标能够实现的概率估计,即:一个人对目标估计可以实现,这时概率为最大(P=1);反之,估计完全不可能实现,这时概率为最小(p=0).因此,期望(值)也可以叫做期望概率.一个人对目标实现可能性估计的依据是过去的经验,以判断一定行为能够导致某种结果或满足某种需要的概率. 什么是数学期望 在概率论和统计学中,数学期望(mean)(或均值,亦简称期望)是试验中每次可能结果的概率乘以其结果的总和。是最基本的数学特征之一。它反映随机变量平均取值的大小。 需要注意的是,期望值并不一定等同于常识中的“期望”——“期望值”也许与每一个结果都不相等。(换句话说,期望值是该变量输出值的平均数。期望值并不一定包含于变量的输出值集合里。) 公式 X1,X2,X3,……,Xn为这离散型随机变量,p(X1),p(X2),p(X3),……p(Xn)为这几个数据的概率函数。在随机出现的几个数据中p(X1),p(X2),p(X3),……p(Xn)概率函数就理解为数据X1,X2,X3,……,Xn出现的频率f(Xi).则: E(X) = X1*p(X1) + X2*p(X2) + …… + Xn*p(Xn) = X1*f1(X1) + X2*f2(X2) + …… + Xn*fn(Xn) 什么是方差 方差的概念与计算公式,例1 两人的5次测验成绩如下:X: 50,100,100,60,50 E(X)=72;Y: 73, 70, 75,72,70 E(Y)=72。平均成绩相同,但X 不稳定,对平均值的偏离大。方差描述随机变量对于数学期望的偏离程度。单个偏离是消除符号影响方差即偏离平方的均值,记为D(X):直接计算公式分离散型和连续型,具体为:这里 是一个数。推导另一种计算公式得到:“方差等于平方的均值减去均值的平方”。其中,分别为离散型和连续型计算公式。 称为标准差或均方差,方差描述波动程度。 方差的性质 1.设C为常数,则D(C) = 0(常数无波动); 2.D(CX)=C2 D(X) (常数平方提取); 证: 特别地 D(-X) = D(X), D(-2X ) = 4D(X)(方差无负值) 3.若X 、Y 相互独立,则证:记则 前面两项恰为 D(X)和D(Y),第三项展开后为 当X、Y 相互独立时, 故第三项为零。 特别地 独立前提的逐项求和,可推广到有限项。 方差公式: 平均数: (n表示这组数据个数,x1、x2、x3……xn表示这组数据具体数值) 方差公式:
|