这篇教程基于深度学习的CT图像肺结节自动检测技术五—3dcnn优化模型写得很实用,希望能帮到您。
import os
import random
from keras import layers
from keras import backend as K
from keras.layers import Input, Convolution3D, MaxPooling3D, Flatten, Dropout,\
AveragePooling3D, BatchNormalization,Activation
from keras.metrics import binary_accuracy, binary_crossentropy
from keras.models import Model
from keras.optimizers import Adam
from keras.callbacks import ModelCheckpoint, History, EarlyStopping
import matplotlib.pyplot as plt
import numpy
import cv2
K.set_image_dim_ordering("tf")
CUBE_SIZE = 32
MEAN_PIXEL_VALUE = 41
BATCH_SIZE = 8
实现3dcnn的网络结构,并加载预训练好的权重——优化模型
def get_3dnnnet(input_shape=(CUBE_SIZE, CUBE_SIZE, CUBE_SIZE, 1),
load_weight_path=None, USE_DROPOUT=True) -> Model:
inputs = Input(shape=input_shape, name="input_1")
x = inputs
X_shortcut = x
x = AveragePooling3D(pool_size=(2, 1, 1), strides=(2, 1, 1), border_mode="same")(x)
x = Convolution3D(64, 3, 3, 3, border_mode='same', name='conv1', subsample=(1, 1, 1))(x)
x = BatchNormalization()(x)
x = Activation('relu')(x)
x = MaxPooling3D(pool_size=(1, 2, 2), strides=(1, 2, 2), border_mode='valid', name='pool1')(x)
if USE_DROPOUT:
x = Dropout(p=0.3)(x)
x = Convolution3D(128, 3, 3, 3, border_mode='same', name='conv2', subsample=(1, 1, 1))(x)
x = BatchNormalization()(x)
x = Activation('relu')(x)
x = MaxPooling3D(pool_size=(2, 2, 2), strides=(2, 2, 2), border_mode='valid', name='pool2')(x)
if USE_DROPOUT:
x = Dropout(p=0.3)(x)
x = Convolution3D(256, 3, 3, 3, activation='relu', border_mode='same', name='conv3a', subsample=(1, 1, 1))(x)
x = Convolution3D(256, 3, 3, 3, activation='relu', border_mode='same', name='conv3b', subsample=(1, 1, 1))(x)
x = MaxPooling3D(pool_size=(2, 2, 2), strides=(2, 2, 2), border_mode='valid', name='pool3')(x)
if USE_DROPOUT:
x = Dropout(p=0.4)(x)
x = Convolution3D(512, 3, 3, 3, activation='relu', border_mode='same', name='conv4a', subsample=(1, 1, 1))(x)
x = Convolution3D(512, 3, 3, 3, activation='relu', border_mode='same', name='conv4b', subsample=(1, 1, 1), )(x)
x = MaxPooling3D(pool_size=(2, 2, 2), strides=(2, 2, 2), border_mode='valid', name='pool4')(x)
if USE_DROPOUT:
x = Dropout(p=0.5)(x)
X_shortcut = Convolution3D(512, 3, 3, 3, activation='relu', border_mode='same', name='conv4a_X', subsample=(1, 1, 1))(x)
X_shortcut = Convolution3D(512, 3, 3, 3, activation='relu', border_mode='same', name='conv4b_X', subsample=(1, 1, 1))(X_shortcut)
X_shortcut = MaxPooling3D(pool_size=(2, 2, 2), strides=(2, 2, 2), border_mode='valid', name='pool5')(X_shortcut)
X_shortcut = BatchNormalization()(X_shortcut)
X = layers.add([x, X_shortcut])
last64 = Convolution3D(64, 2, 2, 2, activation="relu", name="last_64")(X)
out_class = Convolution3D(1, 1, 1, 1, activation="sigmoid", name="out_class_last")(last64)
out_class = Flatten(name="out_class")(out_class)
model = Model(input=inputs, output=[out_class])
model.load_weights(load_weight_path, by_name=False)
model.compile(optimizer=Adam(lr=0.0001, beta_1=0.9, beta_2=0.999, epsilon=1e-08, decay=0.0),
loss={"out_class": "binary_crossentropy"},
metrics={"out_class": [binary_accuracy, binary_crossentropy]})
return model
def stack_2dcube_to_3darray(src_path, rows, cols, size):
img = cv2.imread(src_path, cv2.IMREAD_GRAYSCALE)
res = numpy.zeros((rows * cols, size, size))
img_height = size
img_width = size
for row in range(rows):
for col in range(cols):
src_y = row * img_height
src_x = col * img_width
res[row * cols + col] = img[src_y:src_y + img_height, src_x:src_x + img_width]
return res
def rescale_patient_images2(images_zyx, target_shape, verbose=False):
if verbose:
print("Target: ", target_shape)
print("Shape: ", images_zyx.shape)
resize_x = 1.0
interpolation = cv2.INTER_NEAREST if False else cv2.INTER_LINEAR
res = cv2.resize(images_zyx, dsize=(target_shape[1], target_shape[0]), interpolation=interpolation)
res = res.swapaxes(0, 2)
res = res.swapaxes(0, 1)
if res.shape[2] > 512:
res = res.swapaxes(0, 2)
res1 = res[:256]
res2 = res[256:]
res1 = res1.swapaxes(0, 2)
res2 = res2.swapaxes(0, 2)
res1 = cv2.resize(res1, dsize=(target_shape[2], target_shape[1]), interpolation=interpolation)
res2 = cv2.resize(res2, dsize=(target_shape[2], target_shape[1]), interpolation=interpolation)
res1 = res1.swapaxes(0, 2)
res2 = res2.swapaxes(0, 2)
res = numpy.vstack([res1, res2])
res = res.swapaxes(0, 2)
else:
res = cv2.resize(res, dsize=(target_shape[2], target_shape[1]), interpolation=interpolation)
res = res.swapaxes(0, 2)
res = res.swapaxes(2, 1)
if verbose:
print("Shape after: ", res.shape)
return res
def prepare_image_for_net3D(img, MEAN_PIXEL_VALUE):
img = img.astype(numpy.float32)
img -= MEAN_PIXEL_VALUE
img /= 255.
img = img.reshape(1, img.shape[0], img.shape[1], img.shape[2], 1)
return img
def data_generator(batch_size, record_list, train_set):
batch_idx = 0
means = []
while True:
img_list = []
class_list = []
if train_set:
random.shuffle(record_list)
CROP_SIZE = CUBE_SIZE
for record_idx, record_item in enumerate(record_list):
class_label = record_item[1]
if class_label == 0:
cube_image = stack_2dcube_to_3darray(record_item[0], 6, 8, 48)
elif class_label == 1:
cube_image = stack_2dcube_to_3darray(record_item[0], 8, 8, 64)
if train_set:
pass
current_cube_size = cube_image.shape[0]
indent_x = (current_cube_size - CROP_SIZE) / 2
indent_y = (current_cube_size - CROP_SIZE) / 2
indent_z = (current_cube_size - CROP_SIZE) / 2
wiggle_indent = 0
wiggle = current_cube_size - CROP_SIZE - 1
if wiggle > (CROP_SIZE / 2):
wiggle_indent = CROP_SIZE / 4
wiggle = current_cube_size - CROP_SIZE - CROP_SIZE / 2 - 1
if train_set:
indent_x = wiggle_indent + random.randint(0, wiggle)
indent_y = wiggle_indent + random.randint(0, wiggle)
indent_z = wiggle_indent + random.randint(0, wiggle)
indent_x = int(indent_x)
indent_y = int(indent_y)
indent_z = int(indent_z)
cube_image = cube_image[indent_z:indent_z + CROP_SIZE,
indent_y:indent_y + CROP_SIZE,
indent_x:indent_x + CROP_SIZE]
if CROP_SIZE != CUBE_SIZE:
cube_image = rescale_patient_images2(cube_image, (CUBE_SIZE, CUBE_SIZE, CUBE_SIZE))
assert cube_image.shape == (CUBE_SIZE, CUBE_SIZE, CUBE_SIZE)
if train_set:
if random.randint(0, 100) > 50:
cube_image = numpy.fliplr(cube_image)
if random.randint(0, 100) > 50:
cube_image = numpy.flipud(cube_image)
if random.randint(0, 100) > 50:
cube_image = cube_image[:, :, ::-1]
if random.randint(0, 100) > 50:
cube_image = cube_image[:, ::-1, :]
means.append(cube_image.mean())
img3d = prepare_image_for_net3D(cube_image, MEAN_PIXEL_VALUE)
if train_set:
if len(means) % 1000000 == 0:
print("Mean: ", sum(means) / len(means))
img_list.append(img3d)
class_list.append(class_label)
batch_idx += 1
if batch_idx >= batch_size:
x = numpy.vstack(img_list)
y_class = numpy.vstack(class_list)
yield x, {"out_class": y_class}
img_list = []
class_list = []
batch_idx = 0
def train_3dcnn(train_gen, val_gen):
model = get_3dnnnet(load_weight_path='./model/3dcnn.hd5')
history = History()
model.summary(line_length=150)
checkpoint = ModelCheckpoint('./model/cpt_3dcnn_' + "{epoch:02d}-{binary_accuracy:.4f}.hd5",
monitor='val_loss', verbose=1,
save_best_only=True, save_weights_only=True, mode='auto', period=1)
hist = model.fit_generator(
generator=train_gen, steps_per_epoch=280, epochs=10,
verbose=2,
callbacks=[EarlyStopping(monitor='val_loss', patience=20),
history, checkpoint],
validation_data=val_gen,
validation_steps=60)
plt.plot(hist.history['loss'])
plt.plot(hist.history['val_loss'])
plt.title('model loss')
plt.ylabel('loss')
plt.xlabel('epoch')
plt.legend(['train', 'validation'], loc='upper left')
plt.savefig("./temp_dir/chapter5/learning_curve.jpg")
if __name__ == '__main__':
img_and_labels = []
source_png_positive = "./data/chapter5/train/temp_cudes_pos/"
source_png_negative = "./data/chapter5/train/temp_cudes_neg/"
for each_image in os.listdir(source_png_positive):
file_path = os.path.join(source_png_positive, each_image)
img_and_labels.append((file_path, 1))
for each_image in os.listdir(source_png_negative):
file_path = os.path.join(source_png_negative, each_image)
img_and_labels.append((file_path, 0))
random.shuffle(img_and_labels)
train_res, holdout_res = img_and_labels[:int(len(img_and_labels) * 0.8)],\
img_and_labels[int(len(img_and_labels) * 0.8):]
train_generator = data_generator(BATCH_SIZE, train_res, True)
val_generator = data_generator(BATCH_SIZE, holdout_res, False)
train_3dcnn(train_generator, val_generator)
基于深度学习的CT图像肺结节自动检测技术六—模型预测 基于深度学习的CT图像肺结节自动检测技术二——训练数据处理 |