这篇教程基于深度学习的CT图像肺结节自动检测技术六—模型预测写得很实用,希望能帮到您。
from chapter4 import get_unet
from chapter5 import get_3dnnnet, stack_2dcube_to_3darray, prepare_image_for_net3D, MEAN_PIXEL_VALUE
import glob
import cv2
import numpy as np
from scipy import ndimage
from scipy.ndimage.measurements import center_of_mass
from skimage import morphology
CHANNEL_COUNT = 1
_3DCNN_WEIGHTS = './model/3dcnn.hd5'
UNET_WEIGHTS = './model/unet.hd5'
THRESHOLD = 2
BATCH_SIZE = 1
def unet_candidate_dicom(unet_result_path):
centers = []
image_t = cv2.imread(unet_result_path, cv2.IMREAD_GRAYSCALE)
image_t[image_t < THRESHOLD] = 0
image_t[image_t > 0] = 1
selem = morphology.disk(1)
image_eroded = morphology.binary_dilation(image_t, selem=selem)
label_im, nb_labels = ndimage.label(image_eroded)
for i in range(1, nb_labels + 1):
blob_i = np.where(label_im == i, 1, 0)
mass = center_of_mass(blob_i)
y_px = int(round(mass[0]))
x_px = int(round(mass[1]))
centers.append([y_px, x_px])
return centers
def prepare_image_for_net(img):
img = img.astype(np.float)
img /= 255.
if len(img.shape) == 3:
img = img.reshape(img.shape[-3], img.shape[-2], img.shape[-1])
else:
img = img.reshape(1, img.shape[-2], img.shape[-1], 1)
return img
def unet_predict(imagepath):
model = get_unet()
model.load_weights(UNET_WEIGHTS)
images = []
img = cv2.imread(imagepath, cv2.IMREAD_GRAYSCALE)
images.append(img)
for index, img in enumerate(images):
img = prepare_image_for_net(img)
images[index] = img
images3d = np.vstack(images)
y_pred = model.predict(images3d, batch_size=BATCH_SIZE)
print(len(y_pred))
count = 0
for y in y_pred:
y *= 255.
y = y.reshape((y.shape[0], y.shape[1])).astype(np.uint8)
cv2.imwrite('./temp_dir/chapter6/unet_result.png', y)
count += 1
def _3dcnn_predict(imagepath):
cube_image = stack_2dcube_to_3darray(imagepath, 4, 8, 32)
img3d = prepare_image_for_net3D(cube_image, MEAN_PIXEL_VALUE)
model = get_3dnnnet(load_weight_path='./model/3dcnn.hd5')
result = model.predict(img3d, batch_size=BATCH_SIZE, verbose=1)
print('3dcnn result: ', result)
if __name__ == "__main__":
unet_predict('./data/chapter6/unet_input_img.png')
centers = unet_candidate_dicom('./temp_dir/chapter6/unet_result.png')
print('y, x', centers)
_3dcnn_predict('./data/chapter6/true_positive_nodules.png')
_3dcnn_predict('./data/chapter6/false_positive_nodules.png')
基于深度学习的CT图像肺结节自动检测技术四—数据增强—定义神经网络并训练 基于深度学习的CT图像肺结节自动检测技术五—3dcnn优化模型 |