AutoCAD 3DMAX C语言 Pro/E UG JAVA编程 PHP编程 Maya动画 Matlab应用 Android
Photoshop Word Excel flash VB编程 VC编程 Coreldraw SolidWorks A Designer Unity3D
 首页 > C++

数据结构学习(C++)之单链表

51自学网 http://www.wanshiok.com
  节点类

#ifndef Node_H
#define Node_H

template <class Type> class Node //单链节点类
{
 public:
  Type data;
  Node<Type> *link;
  Node() : data(Type()), link(NULL) {}
  Node(const Type &item) : data(item), link(NULL) {}
  Node(const Type &item, Node<Type> *p) : data(item), link(p) {}
 };
#endif

  【说明】因为数据结构里用到这个结构的地方太多了,如果用《数据结构》那种声明友元的做法,那声明不知道要比这个类的本身长多少。不如开放成员,事实上,这种结构只是C中的struct,除了为了方便初始化一下,不需要任何的方法,原书那是画蛇添足。下面可以看到,链表的public部分没有返回Node或者Node*的函数,所以,别的类不可能用这个开放的接口对链表中的节点操作。

  【重要修改】原书的缺省构造函数是这样的Node() : data(NULL), link(NULL) {} 。我原来也是照着写的,结果当我做扩充时发现这样是不对的。当Type为结构而不是简单类型(int、……),不能简单赋NULL值。这样做使得定义的模板只能用于很少的简单类型。显然,这里应该调用Type的缺省构造函数。 这也要求,用在这里的类一定要有缺省构造函数。在下面可以看到构造链表时,使用了这个缺省构造函数。当然,这里是约定带表头节点的链表,不带头节点的情况请大家自己思考。

  【闲话】请不要对int *p = new int(1);这种语法有什么怀疑,实际上int也可以看成一种class。

  单链表类定义与实现

#ifndef List_H
#define List_H
#ifndef TURE
 #define TURE 1
#endif
#ifndef FALSE
 #define FALSE 0
#endif

typedef int BOOL;

#include "Node.h"

template <class Type> class List //单链表定义
{
 //基本上无参数的成员函数操作的都是当前节点,即current指的节点
 //认为表中“第1个节点”是第0个节点,请注意,即表长为1时,最后一个节点是第0个节点
 public:
  List() { first = current = last = new Node<Type>; prior = NULL; }
  ~List() { MakeEmpty(); delete first; }
   void MakeEmpty() //置空表
  {
   Node<Type> *q;
   while (first->link != NULL)
   {
    q = first->link;
    first->link = q->link;
    delete q;
   }
   Initialize();
  }
  BOOL IsEmpty()
  {
   if (first->link == NULL)
   {
    Initialize();
    return TURE;
   }
   else return FALSE;
  }
  int Length() const //计算带表头节点的单链表长度
  {
   Node<Type> *p = first->link;
   int count = 0;
   while (p != NULL)
   {
    p = p->link;
    count++;
   }
   return count;
  }
  Type *Get()//返回当前节点的数据域的地址
  {
   if (current != NULL) return &current->data;
   else return NULL;
  }
  BOOL Put(Type const &value)//改变当前节点的data,使其为value
  {
   if (current != NULL)
   {
    current->data = value;
    return TURE;
   }
   else return FALSE;
  }

  Type *GetNext()//返回当前节点的下一个节点的数据域的地址,不改变current
  {
   if (current->link != NULL) return &current->link->data;
   else return NULL;
  }
  Type *Next()//移动current到下一个节点,返回节点数据域的地址
  {
   if (current != NULL && current->link != NULL)
   {
    prior = current;
    current = current->link;
    return &current->data;
   }
   else
   {
    return NULL;
   }
  }
  void Insert(const Type &value)//在当前节点的后面插入节点,不改变current
  {
   Node<Type> *p = new Node<Type>(value, current->link);
   current->link = p;
  }
  BOOL InsertBefore(const Type &value)//在当前节点的前面插入一节点,不改变current,改变prior
  {
   Node<Type> *p = new Node<Type>(value);
   if (prior != NULL)
   {
    p->link = current;
    prior->link = p;
    prior = p;
    return TURE;
   }
   else return FALSE;
  }

  BOOL Locate(int i)//移动current到第i个节点
  {
   if (i <= -1) return FALSE;
    current = first->link;
    for (int j = 0; current != NULL && j < i; j++, current = current->link)
     prior = current;
     if (current != NULL) return TURE;
     else return FALSE;
  }

  void First()//移动current到表头
  {
   current = first;
   prior = NULL;
  }
  void End()//移动current到表尾
  {
   if (last->link != NULL)
   {
    for ( ;current->link != NULL; current = current->link)
     prior = current;
     last = current;
   }
   current = last;
  }

  BOOL Find(const Type &value)//移动current到数据等于value的节点
  {
   if (IsEmpty()) return FALSE;
   for (current = first->link, prior = first; current != NULL && current->data != value;
   current = current->link)
    prior = current;
    if (current != NULL) return TURE;
    else return FALSE;
  }
  BOOL Remove()//删除当前节点,current指向下一个节点,如果current在表尾,执行后current = NULL
  {
   if (current != NULL && prior != NULL)
   {
    Node<Type> *p = current;
    prior->link = p->link;
    current = p->link;
    delete p;
    return TURE;
   }
   else return FALSE;
  }

  BOOL RemoveAfter()//删除当前节点的下一个节点,不改变current
  {
   if (current->link != NULL && current != NULL)
   {
    Node<Type> *p = current->link;
    current->link = p->link;
    delete p;
    return TURE;
   }
   else return FALSE;
  }

  friend ostream & operator << (ostream & strm, List<Type> &l)
  {
   l.First();
   while (l.current->link != NULL) strm << *l.Next() << " " ;
    strm << endl;
    l.First();
    return strm;
  }

  protected:

  /*主要是为了高效的入队算法所添加的。因为Insert(),Remove(),RemoveAfter()有可能改变last但没有改变last所以这个算法如果在public里除非不使用这些,否则不正确。但是last除了在队列中非常有用外,其他的时候很少用到,没有必要为了这个用途而降低Insert(),Remove()的效率所以把这部分放到protected,实际上主要是为了给队列继承*/ void LastInsert(const Type &value)

 {
  Node<Type> *p = new Node<Type>(value, last->link);
  last->link = p;
  last = p;
 }

 void Initialize()//当表为空表时使指针复位
 {
  current = last = first;
  prior = NULL;
 }

 //这部分函数返回类型为Node<Type>指针,是扩展List功能的接口
 
 Node<Type> *pGet()
 {
  return current;
 }
 Node<Type> *pNext()
 {
  prior = current;
  current = current->link;
  return current;
 }

 Node<Type> *pGetNext()
 {
  return current->link;
 }

 Node<Type> *pGetFirst()
 {
  return first;
 }

 Node<Type> *pGetLast()
 {
  return last;
 }

 Node<Type> *pGetPrior()
 {
  return prior;
 }

 void PutLast(Node<Type> *p)
 {
  last = p;
 }
//这部分插入删除函数不建立或删除节点,是原位操作的接口

 void Insert(Node<Type> *p)
 {
  p->link = current->link;
  current->link = p;
 }
 void InsertBefore(Node<Type> *p)
 {
  p->link = current;
  prior->link = p;
  prior = p;
 }

 void LastInsert(Node<Type> *p)
 {
  p->link = NULL;
  last->link = p;
  last = p;
 }

 Node<Type> *pRemove()
 {
  if (current != NULL && prior != NULL)
  {
   Node<Type> *p = current;
   prior->link = current->link;
   current = current->link;
   return p;
  }
  else return NULL;
 }

 Node<Type> *pRemoveAfter()
 {
  if (current->link != NULL && current != NULL)
  {
   Node<Type> *p = current->link;
   current->link = current->link->link;
   return p;
  }
  else return NULL;
 }

 private:
  List(const List<Type> &l);
  Node<Type> *first, *current, *prior, *last;
  //尽量不要使用last,如果非要使用先用End()使指针last正确
};

#endif


  【说明】我将原书的游标类Iterator的功能放在了链表类中,屏蔽掉了返回值为Node以及Node*类型的接口,这样的链表简单、实用,扩充性能也很好。

  在完成书后作业的时候,我发现了原书做法的好处,也就是我的做法的不足。如果使用原书的定义,在完成一个功能时,只需要写出对应的函数实现。而在我的定义中,必须先派生一个类,然后把这个功能作为成员或者友元。但是这种比较并不说明书上的定义比我的要合理。首先,使用到原位操作的情况并不多,书后作业只是一种特殊情况;换句话说,书上的定义只是对完成书后作业更实用些。其次,在使用到链表的时候,通常只会用到插入、删除、取数据、搜索等很少的几个功能,我的定义足够用了。而在完成一个软件时,对链表的扩充功能在设计阶段就很清晰了,这时可以派生一个新类在整个软件中使用,对整体的规划更为有利。而对于单个链表的操作,把它作为成员函数更好理解一些。也就是说我的定义灵活性不差。

<

 

 

 
上一篇:数据结构学习(C++)之栈和队列  下一篇:数据结构学习(C++)之二叉树