您当前的位置:首页 > IT编程 > Keras
| C语言 | Java | VB | VC | python | Android | TensorFlow | C++ | oracle | 学术与代码 | cnn卷积神经网络 | gnn | 图像修复 | Keras | 数据集 | Neo4j | 自然语言处理 | 深度学习 | 医学CAD | 医学影像 | 超参数 | pointnet | pytorch | 异常检测 | Transformers | 情感分类 | 知识图谱 |

自学教程:Python layers.Convolution1D方法代码示例

51自学网 2020-12-01 11:09:03
  Keras
这篇教程Python layers.Convolution1D方法代码示例写得很实用,希望能帮到您。

本文整理汇总了Python中keras.layers.Convolution1D方法的典型用法代码示例。如果您正苦于以下问题:Python layers.Convolution1D方法的具体用法?Python layers.Convolution1D怎么用?Python layers.Convolution1D使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在模块keras.layers的用法示例。

在下文中一共展示了layers.Convolution1D方法的18个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于我们的系统推荐出更棒的Python代码示例。

示例1: build_cnn

# 需要导入模块: from keras import layers [as 别名]# 或者: from keras.layers import Convolution1D [as 别名]def build_cnn(input_shape, output_dim,nb_filter):    clf = Sequential()    clf.add(Convolution1D(nb_filter=nb_filter,                          filter_length=4,border_mode="valid",activation="relu",subsample_length=1,input_shape=input_shape))    clf.add(GlobalMaxPooling1D())    clf.add(Dense(100))    clf.add(Dropout(0.2))    clf.add(Activation("tanh"))    clf.add(Dense(output_dim=output_dim, activation='softmax'))    clf.compile(optimizer='adagrad',                     loss='categorical_crossentropy',                     metrics=['accuracy'])    return clf# just one filter 
开发者ID:UKPLab,项目名称:semeval2017-scienceie,代码行数:18,代码来源:convNet.py


示例2: build_cnn_char

# 需要导入模块: from keras import layers [as 别名]# 或者: from keras.layers import Convolution1D [as 别名]def build_cnn_char(input_dim, output_dim,nb_filter):    clf = Sequential()    clf.add(Embedding(input_dim,                      32, # character embedding size                      input_length=maxlen,                      dropout=0.2))    clf.add(Convolution1D(nb_filter=nb_filter,                          filter_length=3,border_mode="valid",activation="relu",subsample_length=1))    clf.add(GlobalMaxPooling1D())    clf.add(Dense(100))    clf.add(Dropout(0.2))    clf.add(Activation("tanh"))    clf.add(Dense(output_dim=output_dim, activation='softmax'))    clf.compile(optimizer='adagrad',                     loss='categorical_crossentropy',                     metrics=['accuracy'])    return clf# just one filter 
开发者ID:UKPLab,项目名称:semeval2017-scienceie,代码行数:22,代码来源:convNet.py


示例3: build

# 需要导入模块: from keras import layers [as 别名]# 或者: from keras.layers import Convolution1D [as 别名]def build(self, input_shape):        # We define convolution, maxpooling and dense layers first.        self.convolution_layers = [Convolution1D(filters=self.num_filters,                                                 kernel_size=ngram_size,                                                 activation=self.conv_layer_activation,                                                 kernel_regularizer=self.regularizer(),                                                 bias_regularizer=self.regularizer())                                   for ngram_size in self.ngram_filter_sizes]        self.projection_layer = Dense(self.output_dim)        # Building all layers because these sub-layers are not explitly part of the computatonal graph.        for convolution_layer in self.convolution_layers:            with K.name_scope(convolution_layer.name):                convolution_layer.build(input_shape)        maxpool_output_dim = self.num_filters * len(self.ngram_filter_sizes)        projection_input_shape = (input_shape[0], maxpool_output_dim)        with K.name_scope(self.projection_layer.name):            self.projection_layer.build(projection_input_shape)        # Defining the weights of this "layer" as the set of weights from all convolution        # and maxpooling layers.        self.trainable_weights = []        for layer in self.convolution_layers + [self.projection_layer]:            self.trainable_weights.extend(layer.trainable_weights)        super(CNNEncoder, self).build(input_shape) 
开发者ID:allenai,项目名称:deep_qa,代码行数:26,代码来源:convolutional_encoder.py


示例4: ConvolutionLayer

# 需要导入模块: from keras import layers [as 别名]# 或者: from keras.layers import Convolution1D [as 别名]def ConvolutionLayer(input_shape, n_classes, filter_sizes=[2, 3, 4, 5], num_filters=20, word_trainable=False, vocab_sz=None,                     embedding_matrix=None, word_embedding_dim=100, hidden_dim=20, act='relu', init='ones'):    x = Input(shape=(input_shape,), name='input')    z = Embedding(vocab_sz, word_embedding_dim, input_length=(input_shape,), name="embedding",                     weights=[embedding_matrix], trainable=word_trainable)(x)    conv_blocks = []    for sz in filter_sizes:        conv = Convolution1D(filters=num_filters,                             kernel_size=sz,                             padding="valid",                             activation=act,                             strides=1,                             kernel_initializer=init)(z)        conv = GlobalMaxPooling1D()(conv)        conv_blocks.append(conv)    z = Concatenate()(conv_blocks) if len(conv_blocks) > 1 else conv_blocks[0]    z = Dense(hidden_dim, activation="relu")(z)    y = Dense(n_classes, activation="softmax")(z)    return Model(inputs=x, outputs=y, name='classifier') 
开发者ID:yumeng5,项目名称:WeSTClass,代码行数:21,代码来源:model.py


示例5: ConvolutionLayer

# 需要导入模块: from keras import layers [as 别名]# 或者: from keras.layers import Convolution1D [as 别名]def ConvolutionLayer(x, input_shape, n_classes, filter_sizes=[2, 3, 4, 5], num_filters=20, word_trainable=False,                     vocab_sz=None,                     embedding_matrix=None, word_embedding_dim=100, hidden_dim=100, act='relu', init='ones'):    if embedding_matrix is not None:        z = Embedding(vocab_sz, word_embedding_dim, input_length=(input_shape,),                      weights=[embedding_matrix], trainable=word_trainable)(x)    else:        z = Embedding(vocab_sz, word_embedding_dim, input_length=(input_shape,), trainable=word_trainable)(x)    conv_blocks = []    for sz in filter_sizes:        conv = Convolution1D(filters=num_filters,                             kernel_size=sz,                             padding="valid",                             activation=act,                             strides=1,                             kernel_initializer=init)(z)        conv = GlobalMaxPooling1D()(conv)        conv_blocks.append(conv)    z = Concatenate()(conv_blocks) if len(conv_blocks) > 1 else conv_blocks[0]    z = Dense(hidden_dim, activation="relu")(z)    y = Dense(n_classes, activation="softmax")(z)    return Model(inputs=x, outputs=y) 
开发者ID:yumeng5,项目名称:WeSHClass,代码行数:24,代码来源:models.py


示例6: __init__

# 需要导入模块: from keras import layers [as 别名]# 或者: from keras.layers import Convolution1D [as 别名]def __init__(self):        from keras.preprocessing import sequence        from keras.models import load_model        from keras.models import Sequential        from keras.preprocessing import sequence        from keras.layers import Dense, Dropout, Activation, Lambda, Input, merge, Flatten        from keras.layers import Embedding        from keras.layers import Convolution1D, MaxPooling1D        from keras import backend as K        from keras.models import Model        from keras.regularizers import l2        global sequence, load_model, Sequential, Dense, Dropout, Activation, Lambda, Input, merge, Flatten        global Embedding, Convolution1D, MaxPooling1D, K, Model, l2        self.svm_clf = MiniClassifier(os.path.join(robotreviewer.DATA_ROOT, 'rct/rct_svm_weights.npz'))        cnn_weight_files = glob.glob(os.path.join(robotreviewer.DATA_ROOT, 'rct/*.h5'))        self.cnn_clfs = [load_model(cnn_weight_file) for cnn_weight_file in cnn_weight_files]        self.svm_vectorizer = HashingVectorizer(binary=False, ngram_range=(1, 1), stop_words='english')        self.cnn_vectorizer = KerasVectorizer(vocab_map_file=os.path.join(robotreviewer.DATA_ROOT, 'rct/cnn_vocab_map.pck'), stop_words='english')        with open(os.path.join(robotreviewer.DATA_ROOT, 'rct/rct_model_calibration.json'), 'r') as f:            self.constants = json.load(f)        self.calibration_lr = {}        with open(os.path.join(robotreviewer.DATA_ROOT, 'rct/svm_cnn_ptyp_calibration.pck'), 'rb') as f:            self.calibration_lr['svm_cnn_ptyp'] = pickle.load(f)        with open(os.path.join(robotreviewer.DATA_ROOT, 'rct/svm_cnn_calibration.pck'), 'rb') as f:            self.calibration_lr['svm_cnn'] = pickle.load(f) 
开发者ID:ijmarshall,项目名称:robotreviewer,代码行数:29,代码来源:rct_robot.py


示例7: cnn_model

# 需要导入模块: from keras import layers [as 别名]# 或者: from keras.layers import Convolution1D [as 别名]def cnn_model(max_len=400,              vocabulary_size=20000,              embedding_dim=128,              hidden_dim=128,              num_filters=512,              filter_sizes="3,4,5",              num_classses=4,              dropout=0.5):    print("Creating text CNN Model...")    # a tensor    inputs = Input(shape=(max_len,), dtype='int32')    # emb    embedding = Embedding(input_dim=vocabulary_size, output_dim=embedding_dim,                          input_length=max_len, name="embedding")(inputs)    # convolution block    if "," in filter_sizes:        filter_sizes = filter_sizes.split(",")    else:        filter_sizes = [3, 4, 5]    conv_blocks = []    for sz in filter_sizes:        conv = Convolution1D(filters=num_filters,                             kernel_size=int(sz),                             strides=1,                             padding='valid',                             activation='relu')(embedding)        conv = MaxPooling1D()(conv)        conv = Flatten()(conv)        conv_blocks.append(conv)    conv_concate = Concatenate()(conv_blocks) if len(conv_blocks) > 1 else conv_blocks[0]    dropout_layer = Dropout(dropout)(conv_concate)    output = Dense(hidden_dim, activation='relu')(dropout_layer)    output = Dense(num_classses, activation='softmax')(output)    # model    model = Model(inputs=inputs, outputs=output)    model.compile(optimizer='adam', loss='categorical_crossentropy', metrics=['accuracy'])    model.summary()    return model 
开发者ID:shibing624,项目名称:text-classifier,代码行数:40,代码来源:deep_model.py


示例8: create_model

# 需要导入模块: from keras import layers [as 别名]# 或者: from keras.layers import Convolution1D [as 别名]def create_model(self, hyper_parameters):        """            构建神经网络        :param hyper_parameters:json,  hyper parameters of network        :return: tensor, moedl        """        super().create_model(hyper_parameters)        x = self.word_embedding.output        # x = Reshape((self.len_max, self.embed_size, 1))(embedding_output) # (None, 50, 30, 1)        # cnn + pool        for char_cnn_size in self.char_cnn_layers:            x = Convolution1D(filters = char_cnn_size[0],                              kernel_size = char_cnn_size[1],)(x)            x = ThresholdedReLU(self.threshold)(x)            if char_cnn_size[2] != -1:                x = MaxPooling1D(pool_size = char_cnn_size[2],                                 strides = 1)(x)        x = Flatten()(x)        # full-connect        for full in self.full_connect_layers:            x = Dense(units=full,)(x)            x = ThresholdedReLU(self.threshold)(x)            x = Dropout(self.dropout)(x)        output = Dense(units=self.label, activation=self.activate_classify)(x)        self.model = Model(inputs=self.word_embedding.input, outputs=output)        self.model.summary(120) 
开发者ID:yongzhuo,项目名称:Keras-TextClassification,代码行数:28,代码来源:graph_zhang.py


示例9: test_conv1d_lstm

# 需要导入模块: from keras import layers [as 别名]# 或者: from keras.layers import Convolution1D [as 别名]def test_conv1d_lstm(self):        from keras.layers import Convolution1D, LSTM, Dense        model = Sequential()        # input_shape = (time_step, dimensions)        model.add(Convolution1D(32, 3, border_mode="same", input_shape=(10, 8)))        # conv1d output shape = (None, 10, 32)        model.add(LSTM(24))        model.add(Dense(1, activation="sigmoid"))        print("model.layers[1].output_shape=", model.layers[1].output_shape)        input_names = ["input"]        output_names = ["output"]        spec = keras.convert(model, input_names, output_names).get_spec()        self.assertIsNotNone(spec)        self.assertTrue(spec.HasField("neuralNetwork"))        # Test the inputs and outputs        self.assertEquals(len(spec.description.input), len(input_names))        six.assertCountEqual(            self, input_names, [x.name for x in spec.description.input]        )        self.assertEquals(len(spec.description.output), len(output_names))        six.assertCountEqual(            self, output_names, [x.name for x in spec.description.output]        )        # Test the layer parameters.        layers = spec.neuralNetwork.layers        self.assertIsNotNone(layers[0].convolution)        self.assertIsNotNone(layers[1].simpleRecurrent)        self.assertIsNotNone(layers[2].innerProduct) 
开发者ID:apple,项目名称:coremltools,代码行数:35,代码来源:test_keras.py


示例10: PLayer

# 需要导入模块: from keras import layers [as 别名]# 或者: from keras.layers import Convolution1D [as 别名]def PLayer(self, size, filters, activation, initializer, regularizer_param):        def f(input):            # model_p = Convolution1D(filters=filters, kernel_size=size, padding='valid', activity_regularizer=l2(regularizer_param), kernel_initializer=initializer, kernel_regularizer=l2(regularizer_param))(input)            model_p = Convolution1D(filters=filters, kernel_size=size, padding='same', kernel_initializer=initializer, kernel_regularizer=l2(regularizer_param))(input)            model_p = BatchNormalization()(model_p)            model_p = Activation(activation)(model_p)            return GlobalMaxPooling1D()(model_p)        return f 
开发者ID:GIST-CSBL,项目名称:DeepConv-DTI,代码行数:10,代码来源:DeepConvDTI.py


示例11: build_cnn_char_complex

# 需要导入模块: from keras import layers [as 别名]# 或者: from keras.layers import Convolution1D [as 别名]def build_cnn_char_complex(input_dim, output_dim,nb_filter):    randomEmbeddingLayer = Embedding(input_dim,32, input_length=maxlen,dropout=0.1)    poolingLayer = Lambda(max_1d, output_shape=(nb_filter,))    conv_filters = []    for n_gram in range(2,4):        ngramModel = Sequential()        ngramModel.add(randomEmbeddingLayer)        ngramModel.add(Convolution1D(nb_filter=nb_filter,                                     filter_length=n_gram,                                     border_mode="valid",                                     activation="relu",                                     subsample_length=1))        ngramModel.add(poolingLayer)        conv_filters.append(ngramModel)        clf = Sequential()    clf.add(Merge(conv_filters,mode="concat"))    clf.add(Activation("relu"))    clf.add(Dense(100))    clf.add(Dropout(0.1))    clf.add(Activation("tanh"))    clf.add(Dense(output_dim=output_dim, activation='softmax'))    clf.compile(optimizer='adagrad',                     loss='categorical_crossentropy',                     metrics=['accuracy'])    return clf 
开发者ID:UKPLab,项目名称:semeval2017-scienceie,代码行数:29,代码来源:convNet.py


示例12: build_lstm

# 需要导入模块: from keras import layers [as 别名]# 或者: from keras.layers import Convolution1D [as 别名]def build_lstm(output_dim, embeddings):    loss_function = "categorical_crossentropy"    # this is the placeholder tensor for the input sequences    sequence = Input(shape=(MAX_SEQUENCE_LENGTH,), dtype="int32")    # this embedding layer will transform the sequences of integers    embedded = Embedding(embeddings.shape[0], embeddings.shape[1], input_length=MAX_SEQUENCE_LENGTH, weights=[embeddings], trainable=True)(sequence)    # 4 convolution layers (each 1000 filters)    cnn = [Convolution1D(filter_length=filters, nb_filter=1000, border_mode="same") for filters in [2, 3, 5, 7]]    # concatenate    merged_cnn = merge([cnn(embedded) for cnn in cnn], mode="concat")    # create attention vector from max-pooled convoluted    maxpool = Lambda(lambda x: keras_backend.max(x, axis=1, keepdims=False), output_shape=lambda x: (x[0], x[2]))    attention_vector = maxpool(merged_cnn)    forwards = AttentionLSTM(64, attention_vector)(embedded)    backwards = AttentionLSTM(64, attention_vector, go_backwards=True)(embedded)    # concatenate the outputs of the 2 LSTM layers    bi_lstm = merge([forwards, backwards], mode="concat", concat_axis=-1)    after_dropout = Dropout(0.5)(bi_lstm)    # softmax output layer    output = Dense(output_dim=output_dim, activation="softmax")(after_dropout)    # the complete omdel    model = Model(input=sequence, output=output)    # try using different optimizers and different optimizer configs    model.compile("adagrad", loss_function, metrics=["accuracy"])    return model 
开发者ID:UKPLab,项目名称:semeval2017-scienceie,代码行数:38,代码来源:blstm.py


示例13: get_model_4

# 需要导入模块: from keras import layers [as 别名]# 或者: from keras.layers import Convolution1D [as 别名]def get_model_4(params):    embedding_weights = pickle.load(open(common.TRAINDATA_DIR+"/embedding_weights_w2v_%s.pk" % params['embeddings_suffix'],"rb"))    graph_in = Input(shape=(params['sequence_length'], params['embedding_dim']))    convs = []    for fsz in params['filter_sizes']:        conv = Convolution1D(nb_filter=params['num_filters'],                             filter_length=fsz,                             border_mode='valid',                             activation='relu',                             subsample_length=1)        x = conv(graph_in)        logging.debug("Filter size: %s" % fsz)        logging.debug("Output CNN: %s" % str(conv.output_shape))        pool = GlobalMaxPooling1D()        x = pool(x)        logging.debug("Output Pooling: %s" % str(pool.output_shape))        convs.append(x)    if len(params['filter_sizes'])>1:        merge = Merge(mode='concat')        out = merge(convs)        logging.debug("Merge: %s" % str(merge.output_shape))    else:        out = convs[0]    graph = Model(input=graph_in, output=out)    # main sequential model    model = Sequential()    if not params['model_variation']=='CNN-static':        model.add(Embedding(len(embedding_weights[0]), params['embedding_dim'], input_length=params['sequence_length'],                            weights=embedding_weights))    model.add(Dropout(params['dropout_prob'][0], input_shape=(params['sequence_length'], params['embedding_dim'])))    model.add(graph)    model.add(Dense(params['n_dense']))    model.add(Dropout(params['dropout_prob'][1]))    model.add(Activation('relu'))    model.add(Dense(output_dim=params["n_out"], init="uniform"))    model.add(Activation(params['final_activation']))    logging.debug("Output CNN: %s" % str(model.output_shape))    if params['final_activation'] == 'linear':        model.add(Lambda(lambda x :K.l2_normalize(x, axis=1)))    return model# word2vec ARCH with LSTM 
开发者ID:sergiooramas,项目名称:tartarus,代码行数:51,代码来源:models.py


示例14: create_default_model

# 需要导入模块: from keras import layers [as 别名]# 或者: from keras.layers import Convolution1D [as 别名]def create_default_model(config_data):    nb_filter = 200    filter_length = 6    hidden_dims = nb_filter    embedding_matrix = load_embedding_matrix(config_data)    max_features = embedding_matrix.shape[0]    embedding_dims = embedding_matrix.shape[1]    max_len = config_data['max_sentence_length']    logging.info('Build Model...')    logging.info('Embedding Dimensions: ({},{})'.format(max_features, embedding_dims))    main_input = Input(batch_shape=(None, max_len), dtype='int32', name='main_input')    if not config_data.get('random_embedding', None):        logging.info('Pretrained Word Embeddings')        embeddings = Embedding(            max_features,            embedding_dims,            input_length=max_len,            weights=[embedding_matrix],            trainable=False        )(main_input)    else:        logging.info('Random Word Embeddings')        embeddings = Embedding(max_features, embedding_dims, init='lecun_uniform', input_length=max_len)(main_input)    zeropadding = ZeroPadding1D(filter_length - 1)(embeddings)    conv1 = Convolution1D(        nb_filter=nb_filter,        filter_length=filter_length,        border_mode='valid',        activation='relu',        subsample_length=1)(zeropadding)    max_pooling1 = MaxPooling1D(pool_length=4, stride=2)(conv1)    conv2 = Convolution1D(        nb_filter=nb_filter,        filter_length=filter_length,        border_mode='valid',        activation='relu',        subsample_length=1)(max_pooling1)    max_pooling2 = MaxPooling1D(pool_length=conv2._keras_shape[1])(conv2)    flatten = Flatten()(max_pooling2)    hidden = Dense(hidden_dims)(flatten)    softmax_layer1 = Dense(3, activation='softmax', name='sentiment_softmax', init='lecun_uniform')(hidden)    model = Model(input=[main_input], output=softmax_layer1)    test_model = Model(input=[main_input], output=[softmax_layer1, hidden])    return model, test_model 
开发者ID:spinningbytes,项目名称:deep-mlsa,代码行数:58,代码来源:default_cnn.py


示例15: create_cnn

# 需要导入模块: from keras import layers [as 别名]# 或者: from keras.layers import Convolution1D [as 别名]def create_cnn(W, max_length, dim=300,               dropout=.5, output_dim=8):    # Convolutional model    filter_sizes=(2,3,4)    num_filters = 3       graph_in = Input(shape=(max_length, len(W[0])))    convs = []    for fsz in filter_sizes:        conv = Convolution1D(nb_filter=num_filters,                 filter_length=fsz,                 border_mode='valid',                 activation='relu',                 subsample_length=1)(graph_in)        pool = MaxPooling1D(pool_length=2)(conv)        flatten = Flatten()(pool)        convs.append(flatten)            out = Merge(mode='concat')(convs)    graph = Model(input=graph_in, output=out)    # Full model    model = Sequential()    model.add(Embedding(output_dim=W.shape[1],                        input_dim=W.shape[0],                        input_length=max_length, weights=[W],                        trainable=True))    model.add(Dropout(dropout))    model.add(graph)    model.add(Dense(dim, activation='relu'))    model.add(Dropout(dropout))    model.add(Dense(output_dim, activation='softmax'))    if output_dim == 2:        model.compile('adam', 'binary_crossentropy',                  metrics=['accuracy'])    else:        model.compile('adam', 'categorical_crossentropy',                  metrics=['accuracy'])    return model    return model 
开发者ID:Artaches,项目名称:SSAN-self-attention-sentiment-analysis-classification,代码行数:45,代码来源:cnn.py


示例16: build_cnn_char_threeModels

# 需要导入模块: from keras import layers [as 别名]# 或者: from keras.layers import Convolution1D [as 别名]def build_cnn_char_threeModels(input_dim, output_dim,nb_filter,filter_size=3):    left = Sequential()    left.add(Embedding(input_dim,             32, # character embedding size             input_length=L,             dropout=0.2))    left.add(Convolution1D(nb_filter=nb_filter,                          filter_length=filter_size,border_mode="valid",activation="relu",subsample_length=1))    left.add(GlobalMaxPooling1D())    left.add(Dense(100))    left.add(Dropout(0.2))    left.add(Activation("tanh"))    center = Sequential()    center.add(Embedding(input_dim,             32, # character embedding size             input_length=M,             dropout=0.2))    center.add(Convolution1D(nb_filter=nb_filter,                          filter_length=filter_size,border_mode="valid",activation="relu",subsample_length=1))    center.add(GlobalMaxPooling1D())    center.add(Dense(100))    center.add(Dropout(0.2))    center.add(Activation("tanh"))    right = Sequential()    right.add(Embedding(input_dim,             32, # character embedding size             input_length=R,             dropout=0.2))    right.add(Convolution1D(nb_filter=nb_filter,                          filter_length=filter_size,border_mode="valid",activation="relu",subsample_length=1))    right.add(GlobalMaxPooling1D())    right.add(Dense(100))    right.add(Dropout(0.2))    right.add(Activation("tanh"))        clf = Sequential()    clf.add(Merge([left,center,right],mode="concat"))    clf.add(Dense(output_dim=output_dim, activation='softmax'))        clf.compile(optimizer='adagrad',                     loss='categorical_crossentropy',                     metrics=['accuracy'])    return clf 
开发者ID:UKPLab,项目名称:semeval2017-scienceie,代码行数:47,代码来源:convNet.py


示例17: init_export_network

# 需要导入模块: from keras import layers [as 别名]# 或者: from keras.layers import Convolution1D [as 别名]def init_export_network(num_classes,                        in_seq_len,                        vocab_size,                        wv_space,                        filter_sizes,                        num_filters,                        concat_dropout_prob,                        emb_l2,                        w_l2,                        optimizer):    # define network layers ----------------------------------------------------    input_shape = tuple([in_seq_len])    model_input = Input(shape=input_shape, name= "Input")    # embedding lookup    emb_lookup = Embedding(vocab_size,                           wv_space,                           input_length=in_seq_len,                           name="embedding",                           #embeddings_initializer=RandomUniform,                           embeddings_regularizer=l2(emb_l2))(model_input)    # convolutional layer and dropout    conv_blocks = []    for ith_filter,sz in enumerate(filter_sizes):        conv = Convolution1D(filters=num_filters[ ith_filter ],                             kernel_size=sz,                             padding="same",                             activation="relu",                             strides=1,                             # kernel_initializer ='lecun_uniform,                             name=str(ith_filter) + "_thfilter")(emb_lookup)        conv_blocks.append(GlobalMaxPooling1D()(conv))    concat = Concatenate()(conv_blocks) if len(conv_blocks) > 1 else conv_blocks[0]    concat_drop = Dropout(concat_dropout_prob)(concat)    # different dense layer per tasks    FC_models = []    for i in range(len(num_classes)):        outlayer = Dense(num_classes[i], name= "Dense"+str(i), activation='softmax')( concat_drop )#, kernel_regularizer=l2(0.01))( concat_drop )        FC_models.append(outlayer)    # the multitsk model    model = Model(inputs=model_input, outputs = FC_models)    model.compile( loss= "sparse_categorical_crossentropy", optimizer= optimizer, metrics=[ "acc" ] )    return model 
开发者ID:ECP-CANDLE,项目名称:Benchmarks,代码行数:50,代码来源:keras_mt_shared_cnn.py


示例18: _build_model

# 需要导入模块: from keras import layers [as 别名]# 或者: from keras.layers import Convolution1D [as 别名]def _build_model(self, embedding_matrix):    """Builds the model.    Args:      embedding_matrix: A float32 array of shape [vocab_size, embedding_dim].    Returns:      The model.    """    max_feature_length = FLAGS.max_sequence_length    model_inputs = []    encoder_outputs = []    for _ in range(3):      model_input = Input(shape=(max_feature_length,))      model_inputs.append(model_input)      embed = Embedding(          output_dim=100,          input_dim=len(embedding_matrix),          input_length=max_feature_length,          weights=[embedding_matrix],          trainable=False)(              model_input)      conv = Convolution1D(          filters=100,          kernel_size=3,          padding='valid',          activation='relu',          strides=1)(              embed)      conv = Dropout(0.4)(conv)      conv = GlobalMaxPooling1D()(conv)      encoder_outputs.append(conv)    merge = Concatenate()(encoder_outputs)    model_output = Dense(1, activation='sigmoid')(merge)    model = Model(model_inputs, model_output)    model.compile(        loss='binary_crossentropy', optimizer='adam', metrics=['accuracy'])    logging.info('Model successfully built. Summary: %s', model.summary())    return model 
开发者ID:google,项目名称:active-qa,代码行数:44,代码来源:selector_keras.py


万事OK自学网:51自学网_软件自学网_CAD自学网自学excel、自学PS、自学CAD、自学C语言、自学css3实例,是一个通过网络自主学习工作技能的自学平台,网友喜欢的软件自学网站。