这篇教程Python layers.Convolution1D方法代码示例写得很实用,希望能帮到您。
本文整理汇总了Python中keras.layers.Convolution1D方法的典型用法代码示例。如果您正苦于以下问题:Python layers.Convolution1D方法的具体用法?Python layers.Convolution1D怎么用?Python layers.Convolution1D使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在模块keras.layers 的用法示例。 在下文中一共展示了layers.Convolution1D方法的18个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于我们的系统推荐出更棒的Python代码示例。 示例1: build_cnn# 需要导入模块: from keras import layers [as 别名]# 或者: from keras.layers import Convolution1D [as 别名]def build_cnn(input_shape, output_dim,nb_filter): clf = Sequential() clf.add(Convolution1D(nb_filter=nb_filter, filter_length=4,border_mode="valid",activation="relu",subsample_length=1,input_shape=input_shape)) clf.add(GlobalMaxPooling1D()) clf.add(Dense(100)) clf.add(Dropout(0.2)) clf.add(Activation("tanh")) clf.add(Dense(output_dim=output_dim, activation='softmax')) clf.compile(optimizer='adagrad', loss='categorical_crossentropy', metrics=['accuracy']) return clf# just one filter
开发者ID:UKPLab,项目名称:semeval2017-scienceie,代码行数:18,代码来源:convNet.py
示例2: build_cnn_char# 需要导入模块: from keras import layers [as 别名]# 或者: from keras.layers import Convolution1D [as 别名]def build_cnn_char(input_dim, output_dim,nb_filter): clf = Sequential() clf.add(Embedding(input_dim, 32, # character embedding size input_length=maxlen, dropout=0.2)) clf.add(Convolution1D(nb_filter=nb_filter, filter_length=3,border_mode="valid",activation="relu",subsample_length=1)) clf.add(GlobalMaxPooling1D()) clf.add(Dense(100)) clf.add(Dropout(0.2)) clf.add(Activation("tanh")) clf.add(Dense(output_dim=output_dim, activation='softmax')) clf.compile(optimizer='adagrad', loss='categorical_crossentropy', metrics=['accuracy']) return clf# just one filter
开发者ID:UKPLab,项目名称:semeval2017-scienceie,代码行数:22,代码来源:convNet.py
示例3: build# 需要导入模块: from keras import layers [as 别名]# 或者: from keras.layers import Convolution1D [as 别名]def build(self, input_shape): # We define convolution, maxpooling and dense layers first. self.convolution_layers = [Convolution1D(filters=self.num_filters, kernel_size=ngram_size, activation=self.conv_layer_activation, kernel_regularizer=self.regularizer(), bias_regularizer=self.regularizer()) for ngram_size in self.ngram_filter_sizes] self.projection_layer = Dense(self.output_dim) # Building all layers because these sub-layers are not explitly part of the computatonal graph. for convolution_layer in self.convolution_layers: with K.name_scope(convolution_layer.name): convolution_layer.build(input_shape) maxpool_output_dim = self.num_filters * len(self.ngram_filter_sizes) projection_input_shape = (input_shape[0], maxpool_output_dim) with K.name_scope(self.projection_layer.name): self.projection_layer.build(projection_input_shape) # Defining the weights of this "layer" as the set of weights from all convolution # and maxpooling layers. self.trainable_weights = [] for layer in self.convolution_layers + [self.projection_layer]: self.trainable_weights.extend(layer.trainable_weights) super(CNNEncoder, self).build(input_shape)
示例4: ConvolutionLayer# 需要导入模块: from keras import layers [as 别名]# 或者: from keras.layers import Convolution1D [as 别名]def ConvolutionLayer(input_shape, n_classes, filter_sizes=[2, 3, 4, 5], num_filters=20, word_trainable=False, vocab_sz=None, embedding_matrix=None, word_embedding_dim=100, hidden_dim=20, act='relu', init='ones'): x = Input(shape=(input_shape,), name='input') z = Embedding(vocab_sz, word_embedding_dim, input_length=(input_shape,), name="embedding", weights=[embedding_matrix], trainable=word_trainable)(x) conv_blocks = [] for sz in filter_sizes: conv = Convolution1D(filters=num_filters, kernel_size=sz, padding="valid", activation=act, strides=1, kernel_initializer=init)(z) conv = GlobalMaxPooling1D()(conv) conv_blocks.append(conv) z = Concatenate()(conv_blocks) if len(conv_blocks) > 1 else conv_blocks[0] z = Dense(hidden_dim, activation="relu")(z) y = Dense(n_classes, activation="softmax")(z) return Model(inputs=x, outputs=y, name='classifier')
开发者ID:yumeng5,项目名称:WeSTClass,代码行数:21,代码来源:model.py
示例5: ConvolutionLayer# 需要导入模块: from keras import layers [as 别名]# 或者: from keras.layers import Convolution1D [as 别名]def ConvolutionLayer(x, input_shape, n_classes, filter_sizes=[2, 3, 4, 5], num_filters=20, word_trainable=False, vocab_sz=None, embedding_matrix=None, word_embedding_dim=100, hidden_dim=100, act='relu', init='ones'): if embedding_matrix is not None: z = Embedding(vocab_sz, word_embedding_dim, input_length=(input_shape,), weights=[embedding_matrix], trainable=word_trainable)(x) else: z = Embedding(vocab_sz, word_embedding_dim, input_length=(input_shape,), trainable=word_trainable)(x) conv_blocks = [] for sz in filter_sizes: conv = Convolution1D(filters=num_filters, kernel_size=sz, padding="valid", activation=act, strides=1, kernel_initializer=init)(z) conv = GlobalMaxPooling1D()(conv) conv_blocks.append(conv) z = Concatenate()(conv_blocks) if len(conv_blocks) > 1 else conv_blocks[0] z = Dense(hidden_dim, activation="relu")(z) y = Dense(n_classes, activation="softmax")(z) return Model(inputs=x, outputs=y)
开发者ID:yumeng5,项目名称:WeSHClass,代码行数:24,代码来源:models.py
示例6: __init__# 需要导入模块: from keras import layers [as 别名]# 或者: from keras.layers import Convolution1D [as 别名]def __init__(self): from keras.preprocessing import sequence from keras.models import load_model from keras.models import Sequential from keras.preprocessing import sequence from keras.layers import Dense, Dropout, Activation, Lambda, Input, merge, Flatten from keras.layers import Embedding from keras.layers import Convolution1D, MaxPooling1D from keras import backend as K from keras.models import Model from keras.regularizers import l2 global sequence, load_model, Sequential, Dense, Dropout, Activation, Lambda, Input, merge, Flatten global Embedding, Convolution1D, MaxPooling1D, K, Model, l2 self.svm_clf = MiniClassifier(os.path.join(robotreviewer.DATA_ROOT, 'rct/rct_svm_weights.npz')) cnn_weight_files = glob.glob(os.path.join(robotreviewer.DATA_ROOT, 'rct/*.h5')) self.cnn_clfs = [load_model(cnn_weight_file) for cnn_weight_file in cnn_weight_files] self.svm_vectorizer = HashingVectorizer(binary=False, ngram_range=(1, 1), stop_words='english') self.cnn_vectorizer = KerasVectorizer(vocab_map_file=os.path.join(robotreviewer.DATA_ROOT, 'rct/cnn_vocab_map.pck'), stop_words='english') with open(os.path.join(robotreviewer.DATA_ROOT, 'rct/rct_model_calibration.json'), 'r') as f: self.constants = json.load(f) self.calibration_lr = {} with open(os.path.join(robotreviewer.DATA_ROOT, 'rct/svm_cnn_ptyp_calibration.pck'), 'rb') as f: self.calibration_lr['svm_cnn_ptyp'] = pickle.load(f) with open(os.path.join(robotreviewer.DATA_ROOT, 'rct/svm_cnn_calibration.pck'), 'rb') as f: self.calibration_lr['svm_cnn'] = pickle.load(f)
开发者ID:ijmarshall,项目名称:robotreviewer,代码行数:29,代码来源:rct_robot.py
示例7: cnn_model# 需要导入模块: from keras import layers [as 别名]# 或者: from keras.layers import Convolution1D [as 别名]def cnn_model(max_len=400, vocabulary_size=20000, embedding_dim=128, hidden_dim=128, num_filters=512, filter_sizes="3,4,5", num_classses=4, dropout=0.5): print("Creating text CNN Model...") # a tensor inputs = Input(shape=(max_len,), dtype='int32') # emb embedding = Embedding(input_dim=vocabulary_size, output_dim=embedding_dim, input_length=max_len, name="embedding")(inputs) # convolution block if "," in filter_sizes: filter_sizes = filter_sizes.split(",") else: filter_sizes = [3, 4, 5] conv_blocks = [] for sz in filter_sizes: conv = Convolution1D(filters=num_filters, kernel_size=int(sz), strides=1, padding='valid', activation='relu')(embedding) conv = MaxPooling1D()(conv) conv = Flatten()(conv) conv_blocks.append(conv) conv_concate = Concatenate()(conv_blocks) if len(conv_blocks) > 1 else conv_blocks[0] dropout_layer = Dropout(dropout)(conv_concate) output = Dense(hidden_dim, activation='relu')(dropout_layer) output = Dense(num_classses, activation='softmax')(output) # model model = Model(inputs=inputs, outputs=output) model.compile(optimizer='adam', loss='categorical_crossentropy', metrics=['accuracy']) model.summary() return model
示例8: create_model# 需要导入模块: from keras import layers [as 别名]# 或者: from keras.layers import Convolution1D [as 别名]def create_model(self, hyper_parameters): """ 构建神经网络 :param hyper_parameters:json, hyper parameters of network :return: tensor, moedl """ super().create_model(hyper_parameters) x = self.word_embedding.output # x = Reshape((self.len_max, self.embed_size, 1))(embedding_output) # (None, 50, 30, 1) # cnn + pool for char_cnn_size in self.char_cnn_layers: x = Convolution1D(filters = char_cnn_size[0], kernel_size = char_cnn_size[1],)(x) x = ThresholdedReLU(self.threshold)(x) if char_cnn_size[2] != -1: x = MaxPooling1D(pool_size = char_cnn_size[2], strides = 1)(x) x = Flatten()(x) # full-connect for full in self.full_connect_layers: x = Dense(units=full,)(x) x = ThresholdedReLU(self.threshold)(x) x = Dropout(self.dropout)(x) output = Dense(units=self.label, activation=self.activate_classify)(x) self.model = Model(inputs=self.word_embedding.input, outputs=output) self.model.summary(120)
开发者ID:yongzhuo,项目名称:Keras-TextClassification,代码行数:28,代码来源:graph_zhang.py
示例9: test_conv1d_lstm# 需要导入模块: from keras import layers [as 别名]# 或者: from keras.layers import Convolution1D [as 别名]def test_conv1d_lstm(self): from keras.layers import Convolution1D, LSTM, Dense model = Sequential() # input_shape = (time_step, dimensions) model.add(Convolution1D(32, 3, border_mode="same", input_shape=(10, 8))) # conv1d output shape = (None, 10, 32) model.add(LSTM(24)) model.add(Dense(1, activation="sigmoid")) print("model.layers[1].output_shape=", model.layers[1].output_shape) input_names = ["input"] output_names = ["output"] spec = keras.convert(model, input_names, output_names).get_spec() self.assertIsNotNone(spec) self.assertTrue(spec.HasField("neuralNetwork")) # Test the inputs and outputs self.assertEquals(len(spec.description.input), len(input_names)) six.assertCountEqual( self, input_names, [x.name for x in spec.description.input] ) self.assertEquals(len(spec.description.output), len(output_names)) six.assertCountEqual( self, output_names, [x.name for x in spec.description.output] ) # Test the layer parameters. layers = spec.neuralNetwork.layers self.assertIsNotNone(layers[0].convolution) self.assertIsNotNone(layers[1].simpleRecurrent) self.assertIsNotNone(layers[2].innerProduct)
示例10: PLayer# 需要导入模块: from keras import layers [as 别名]# 或者: from keras.layers import Convolution1D [as 别名]def PLayer(self, size, filters, activation, initializer, regularizer_param): def f(input): # model_p = Convolution1D(filters=filters, kernel_size=size, padding='valid', activity_regularizer=l2(regularizer_param), kernel_initializer=initializer, kernel_regularizer=l2(regularizer_param))(input) model_p = Convolution1D(filters=filters, kernel_size=size, padding='same', kernel_initializer=initializer, kernel_regularizer=l2(regularizer_param))(input) model_p = BatchNormalization()(model_p) model_p = Activation(activation)(model_p) return GlobalMaxPooling1D()(model_p) return f
示例11: build_cnn_char_complex# 需要导入模块: from keras import layers [as 别名]# 或者: from keras.layers import Convolution1D [as 别名]def build_cnn_char_complex(input_dim, output_dim,nb_filter): randomEmbeddingLayer = Embedding(input_dim,32, input_length=maxlen,dropout=0.1) poolingLayer = Lambda(max_1d, output_shape=(nb_filter,)) conv_filters = [] for n_gram in range(2,4): ngramModel = Sequential() ngramModel.add(randomEmbeddingLayer) ngramModel.add(Convolution1D(nb_filter=nb_filter, filter_length=n_gram, border_mode="valid", activation="relu", subsample_length=1)) ngramModel.add(poolingLayer) conv_filters.append(ngramModel) clf = Sequential() clf.add(Merge(conv_filters,mode="concat")) clf.add(Activation("relu")) clf.add(Dense(100)) clf.add(Dropout(0.1)) clf.add(Activation("tanh")) clf.add(Dense(output_dim=output_dim, activation='softmax')) clf.compile(optimizer='adagrad', loss='categorical_crossentropy', metrics=['accuracy']) return clf
开发者ID:UKPLab,项目名称:semeval2017-scienceie,代码行数:29,代码来源:convNet.py
示例12: build_lstm# 需要导入模块: from keras import layers [as 别名]# 或者: from keras.layers import Convolution1D [as 别名]def build_lstm(output_dim, embeddings): loss_function = "categorical_crossentropy" # this is the placeholder tensor for the input sequences sequence = Input(shape=(MAX_SEQUENCE_LENGTH,), dtype="int32") # this embedding layer will transform the sequences of integers embedded = Embedding(embeddings.shape[0], embeddings.shape[1], input_length=MAX_SEQUENCE_LENGTH, weights=[embeddings], trainable=True)(sequence) # 4 convolution layers (each 1000 filters) cnn = [Convolution1D(filter_length=filters, nb_filter=1000, border_mode="same") for filters in [2, 3, 5, 7]] # concatenate merged_cnn = merge([cnn(embedded) for cnn in cnn], mode="concat") # create attention vector from max-pooled convoluted maxpool = Lambda(lambda x: keras_backend.max(x, axis=1, keepdims=False), output_shape=lambda x: (x[0], x[2])) attention_vector = maxpool(merged_cnn) forwards = AttentionLSTM(64, attention_vector)(embedded) backwards = AttentionLSTM(64, attention_vector, go_backwards=True)(embedded) # concatenate the outputs of the 2 LSTM layers bi_lstm = merge([forwards, backwards], mode="concat", concat_axis=-1) after_dropout = Dropout(0.5)(bi_lstm) # softmax output layer output = Dense(output_dim=output_dim, activation="softmax")(after_dropout) # the complete omdel model = Model(input=sequence, output=output) # try using different optimizers and different optimizer configs model.compile("adagrad", loss_function, metrics=["accuracy"]) return model
开发者ID:UKPLab,项目名称:semeval2017-scienceie,代码行数:38,代码来源:blstm.py
示例13: get_model_4# 需要导入模块: from keras import layers [as 别名]# 或者: from keras.layers import Convolution1D [as 别名]def get_model_4(params): embedding_weights = pickle.load(open(common.TRAINDATA_DIR+"/embedding_weights_w2v_%s.pk" % params['embeddings_suffix'],"rb")) graph_in = Input(shape=(params['sequence_length'], params['embedding_dim'])) convs = [] for fsz in params['filter_sizes']: conv = Convolution1D(nb_filter=params['num_filters'], filter_length=fsz, border_mode='valid', activation='relu', subsample_length=1) x = conv(graph_in) logging.debug("Filter size: %s" % fsz) logging.debug("Output CNN: %s" % str(conv.output_shape)) pool = GlobalMaxPooling1D() x = pool(x) logging.debug("Output Pooling: %s" % str(pool.output_shape)) convs.append(x) if len(params['filter_sizes'])>1: merge = Merge(mode='concat') out = merge(convs) logging.debug("Merge: %s" % str(merge.output_shape)) else: out = convs[0] graph = Model(input=graph_in, output=out) # main sequential model model = Sequential() if not params['model_variation']=='CNN-static': model.add(Embedding(len(embedding_weights[0]), params['embedding_dim'], input_length=params['sequence_length'], weights=embedding_weights)) model.add(Dropout(params['dropout_prob'][0], input_shape=(params['sequence_length'], params['embedding_dim']))) model.add(graph) model.add(Dense(params['n_dense'])) model.add(Dropout(params['dropout_prob'][1])) model.add(Activation('relu')) model.add(Dense(output_dim=params["n_out"], init="uniform")) model.add(Activation(params['final_activation'])) logging.debug("Output CNN: %s" % str(model.output_shape)) if params['final_activation'] == 'linear': model.add(Lambda(lambda x :K.l2_normalize(x, axis=1))) return model# word2vec ARCH with LSTM
开发者ID:sergiooramas,项目名称:tartarus,代码行数:51,代码来源:models.py
示例14: create_default_model# 需要导入模块: from keras import layers [as 别名]# 或者: from keras.layers import Convolution1D [as 别名]def create_default_model(config_data): nb_filter = 200 filter_length = 6 hidden_dims = nb_filter embedding_matrix = load_embedding_matrix(config_data) max_features = embedding_matrix.shape[0] embedding_dims = embedding_matrix.shape[1] max_len = config_data['max_sentence_length'] logging.info('Build Model...') logging.info('Embedding Dimensions: ({},{})'.format(max_features, embedding_dims)) main_input = Input(batch_shape=(None, max_len), dtype='int32', name='main_input') if not config_data.get('random_embedding', None): logging.info('Pretrained Word Embeddings') embeddings = Embedding( max_features, embedding_dims, input_length=max_len, weights=[embedding_matrix], trainable=False )(main_input) else: logging.info('Random Word Embeddings') embeddings = Embedding(max_features, embedding_dims, init='lecun_uniform', input_length=max_len)(main_input) zeropadding = ZeroPadding1D(filter_length - 1)(embeddings) conv1 = Convolution1D( nb_filter=nb_filter, filter_length=filter_length, border_mode='valid', activation='relu', subsample_length=1)(zeropadding) max_pooling1 = MaxPooling1D(pool_length=4, stride=2)(conv1) conv2 = Convolution1D( nb_filter=nb_filter, filter_length=filter_length, border_mode='valid', activation='relu', subsample_length=1)(max_pooling1) max_pooling2 = MaxPooling1D(pool_length=conv2._keras_shape[1])(conv2) flatten = Flatten()(max_pooling2) hidden = Dense(hidden_dims)(flatten) softmax_layer1 = Dense(3, activation='softmax', name='sentiment_softmax', init='lecun_uniform')(hidden) model = Model(input=[main_input], output=softmax_layer1) test_model = Model(input=[main_input], output=[softmax_layer1, hidden]) return model, test_model
示例15: create_cnn# 需要导入模块: from keras import layers [as 别名]# 或者: from keras.layers import Convolution1D [as 别名]def create_cnn(W, max_length, dim=300, dropout=.5, output_dim=8): # Convolutional model filter_sizes=(2,3,4) num_filters = 3 graph_in = Input(shape=(max_length, len(W[0]))) convs = [] for fsz in filter_sizes: conv = Convolution1D(nb_filter=num_filters, filter_length=fsz, border_mode='valid', activation='relu', subsample_length=1)(graph_in) pool = MaxPooling1D(pool_length=2)(conv) flatten = Flatten()(pool) convs.append(flatten) out = Merge(mode='concat')(convs) graph = Model(input=graph_in, output=out) # Full model model = Sequential() model.add(Embedding(output_dim=W.shape[1], input_dim=W.shape[0], input_length=max_length, weights=[W], trainable=True)) model.add(Dropout(dropout)) model.add(graph) model.add(Dense(dim, activation='relu')) model.add(Dropout(dropout)) model.add(Dense(output_dim, activation='softmax')) if output_dim == 2: model.compile('adam', 'binary_crossentropy', metrics=['accuracy']) else: model.compile('adam', 'categorical_crossentropy', metrics=['accuracy']) return model return model
开发者ID:Artaches,项目名称:SSAN-self-attention-sentiment-analysis-classification,代码行数:45,代码来源:cnn.py
示例16: build_cnn_char_threeModels# 需要导入模块: from keras import layers [as 别名]# 或者: from keras.layers import Convolution1D [as 别名]def build_cnn_char_threeModels(input_dim, output_dim,nb_filter,filter_size=3): left = Sequential() left.add(Embedding(input_dim, 32, # character embedding size input_length=L, dropout=0.2)) left.add(Convolution1D(nb_filter=nb_filter, filter_length=filter_size,border_mode="valid",activation="relu",subsample_length=1)) left.add(GlobalMaxPooling1D()) left.add(Dense(100)) left.add(Dropout(0.2)) left.add(Activation("tanh")) center = Sequential() center.add(Embedding(input_dim, 32, # character embedding size input_length=M, dropout=0.2)) center.add(Convolution1D(nb_filter=nb_filter, filter_length=filter_size,border_mode="valid",activation="relu",subsample_length=1)) center.add(GlobalMaxPooling1D()) center.add(Dense(100)) center.add(Dropout(0.2)) center.add(Activation("tanh")) right = Sequential() right.add(Embedding(input_dim, 32, # character embedding size input_length=R, dropout=0.2)) right.add(Convolution1D(nb_filter=nb_filter, filter_length=filter_size,border_mode="valid",activation="relu",subsample_length=1)) right.add(GlobalMaxPooling1D()) right.add(Dense(100)) right.add(Dropout(0.2)) right.add(Activation("tanh")) clf = Sequential() clf.add(Merge([left,center,right],mode="concat")) clf.add(Dense(output_dim=output_dim, activation='softmax')) clf.compile(optimizer='adagrad', loss='categorical_crossentropy', metrics=['accuracy']) return clf
开发者ID:UKPLab,项目名称:semeval2017-scienceie,代码行数:47,代码来源:convNet.py
示例17: init_export_network# 需要导入模块: from keras import layers [as 别名]# 或者: from keras.layers import Convolution1D [as 别名]def init_export_network(num_classes, in_seq_len, vocab_size, wv_space, filter_sizes, num_filters, concat_dropout_prob, emb_l2, w_l2, optimizer): # define network layers ---------------------------------------------------- input_shape = tuple([in_seq_len]) model_input = Input(shape=input_shape, name= "Input") # embedding lookup emb_lookup = Embedding(vocab_size, wv_space, input_length=in_seq_len, name="embedding", #embeddings_initializer=RandomUniform, embeddings_regularizer=l2(emb_l2))(model_input) # convolutional layer and dropout conv_blocks = [] for ith_filter,sz in enumerate(filter_sizes): conv = Convolution1D(filters=num_filters[ ith_filter ], kernel_size=sz, padding="same", activation="relu", strides=1, # kernel_initializer ='lecun_uniform, name=str(ith_filter) + "_thfilter")(emb_lookup) conv_blocks.append(GlobalMaxPooling1D()(conv)) concat = Concatenate()(conv_blocks) if len(conv_blocks) > 1 else conv_blocks[0] concat_drop = Dropout(concat_dropout_prob)(concat) # different dense layer per tasks FC_models = [] for i in range(len(num_classes)): outlayer = Dense(num_classes[i], name= "Dense"+str(i), activation='softmax')( concat_drop )#, kernel_regularizer=l2(0.01))( concat_drop ) FC_models.append(outlayer) # the multitsk model model = Model(inputs=model_input, outputs = FC_models) model.compile( loss= "sparse_categorical_crossentropy", optimizer= optimizer, metrics=[ "acc" ] ) return model
示例18: _build_model# 需要导入模块: from keras import layers [as 别名]# 或者: from keras.layers import Convolution1D [as 别名]def _build_model(self, embedding_matrix): """Builds the model. Args: embedding_matrix: A float32 array of shape [vocab_size, embedding_dim]. Returns: The model. """ max_feature_length = FLAGS.max_sequence_length model_inputs = [] encoder_outputs = [] for _ in range(3): model_input = Input(shape=(max_feature_length,)) model_inputs.append(model_input) embed = Embedding( output_dim=100, input_dim=len(embedding_matrix), input_length=max_feature_length, weights=[embedding_matrix], trainable=False)( model_input) conv = Convolution1D( filters=100, kernel_size=3, padding='valid', activation='relu', strides=1)( embed) conv = Dropout(0.4)(conv) conv = GlobalMaxPooling1D()(conv) encoder_outputs.append(conv) merge = Concatenate()(encoder_outputs) model_output = Dense(1, activation='sigmoid')(merge) model = Model(model_inputs, model_output) model.compile( loss='binary_crossentropy', optimizer='adam', metrics=['accuracy']) logging.info('Model successfully built. Summary: %s', model.summary()) return model
|