您当前的位置:首页 > IT编程 > Keras
| C语言 | Java | VB | VC | python | Android | TensorFlow | C++ | oracle | 学术与代码 | cnn卷积神经网络 | gnn | 图像修复 | Keras | 数据集 | Neo4j | 自然语言处理 | 深度学习 | 医学CAD | 医学影像 | 超参数 | pointnet | pytorch | 异常检测 | Transformers | 情感分类 | 知识图谱 |

自学教程:Python layers.PReLU方法代码示例

51自学网 2020-12-01 11:09:12
  Keras
这篇教程Python layers.PReLU方法代码示例写得很实用,希望能帮到您。

本文整理汇总了Python中keras.layers.PReLU方法的典型用法代码示例。如果您正苦于以下问题:Python layers.PReLU方法的具体用法?Python layers.PReLU怎么用?Python layers.PReLU使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在模块keras.layers的用法示例。

在下文中一共展示了layers.PReLU方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于我们的系统推荐出更棒的Python代码示例。

示例1: CapsuleNet

# 需要导入模块: from keras import layers [as 别名]# 或者: from keras.layers import PReLU [as 别名]def CapsuleNet(n_capsule = 10, n_routings = 5, capsule_dim = 16,     n_recurrent=100, dropout_rate=0.2, l2_penalty=0.0001):    K.clear_session()    inputs = Input(shape=(170,))    x = Embedding(21099, 300,  trainable=True)(inputs)            x = SpatialDropout1D(dropout_rate)(x)    x = Bidirectional(        CuDNNGRU(n_recurrent, return_sequences=True,                 kernel_regularizer=l2(l2_penalty),                 recurrent_regularizer=l2(l2_penalty)))(x)    x = PReLU()(x)    x = Capsule(        num_capsule=n_capsule, dim_capsule=capsule_dim,        routings=n_routings, share_weights=True)(x)    x = Flatten(name = 'concatenate')(x)    x = Dropout(dropout_rate)(x)#     fc = Dense(128, activation='sigmoid')(x)    outputs = Dense(6, activation='softmax')(x)    model = Model(inputs=inputs, outputs=outputs)    model.compile(loss='categorical_crossentropy', optimizer='nadam', metrics=['accuracy'])    return model 
开发者ID:WeavingWong,项目名称:DigiX_HuaWei_Population_Age_Attribution_Predict,代码行数:24,代码来源:models.py


示例2: CapsuleNet_v2

# 需要导入模块: from keras import layers [as 别名]# 或者: from keras.layers import PReLU [as 别名]def CapsuleNet_v2(n_capsule = 10, n_routings = 5, capsule_dim = 16,     n_recurrent=100, dropout_rate=0.2, l2_penalty=0.0001):    K.clear_session()    inputs = Input(shape=(200,))    x = Embedding(20000, 300,  trainable=True)(inputs)            x = SpatialDropout1D(dropout_rate)(x)    x = Bidirectional(        CuDNNGRU(n_recurrent, return_sequences=True,                 kernel_regularizer=l2(l2_penalty),                 recurrent_regularizer=l2(l2_penalty)))(x)    x = PReLU()(x)    x = Capsule(        num_capsule=n_capsule, dim_capsule=capsule_dim,        routings=n_routings, share_weights=True)(x)    x = Flatten(name = 'concatenate')(x)    x = Dropout(dropout_rate)(x)#     fc = Dense(128, activation='sigmoid')(x)    outputs = Dense(6, activation='softmax')(x)    model = Model(inputs=inputs, outputs=outputs)    model.compile(loss='categorical_crossentropy', optimizer='nadam', metrics=['accuracy'])    return model 
开发者ID:WeavingWong,项目名称:DigiX_HuaWei_Population_Age_Attribution_Predict,代码行数:24,代码来源:models.py


示例3: model_definition

# 需要导入模块: from keras import layers [as 别名]# 或者: from keras.layers import PReLU [as 别名]def model_definition():        """ Keras RNetwork for MTCNN """        input_ = Input(shape=(24, 24, 3))        var_x = Conv2D(28, (3, 3), strides=1, padding='valid', name='conv1')(input_)        var_x = PReLU(shared_axes=[1, 2], name='prelu1')(var_x)        var_x = MaxPool2D(pool_size=3, strides=2, padding='same')(var_x)        var_x = Conv2D(48, (3, 3), strides=1, padding='valid', name='conv2')(var_x)        var_x = PReLU(shared_axes=[1, 2], name='prelu2')(var_x)        var_x = MaxPool2D(pool_size=3, strides=2)(var_x)        var_x = Conv2D(64, (2, 2), strides=1, padding='valid', name='conv3')(var_x)        var_x = PReLU(shared_axes=[1, 2], name='prelu3')(var_x)        var_x = Permute((3, 2, 1))(var_x)        var_x = Flatten()(var_x)        var_x = Dense(128, name='conv4')(var_x)        var_x = PReLU(name='prelu4')(var_x)        classifier = Dense(2, activation='softmax', name='conv5-1')(var_x)        bbox_regress = Dense(4, name='conv5-2')(var_x)        return [input_], [classifier, bbox_regress] 
开发者ID:deepfakes,项目名称:faceswap,代码行数:22,代码来源:mtcnn.py


示例4: get_srresnet_model

# 需要导入模块: from keras import layers [as 别名]# 或者: from keras.layers import PReLU [as 别名]def get_srresnet_model(input_channel_num=3, feature_dim=64, resunit_num=16):    def _residual_block(inputs):        x = Conv2D(feature_dim, (3, 3), padding="same", kernel_initializer="he_normal")(inputs)        x = BatchNormalization()(x)        x = PReLU(shared_axes=[1, 2])(x)        x = Conv2D(feature_dim, (3, 3), padding="same", kernel_initializer="he_normal")(x)        x = BatchNormalization()(x)        m = Add()([x, inputs])        return m    inputs = Input(shape=(None, None, input_channel_num))    x = Conv2D(feature_dim, (3, 3), padding="same", kernel_initializer="he_normal")(inputs)    x = PReLU(shared_axes=[1, 2])(x)    x0 = x    for i in range(resunit_num):        x = _residual_block(x)    x = Conv2D(feature_dim, (3, 3), padding="same", kernel_initializer="he_normal")(x)    x = BatchNormalization()(x)    x = Add()([x, x0])    x = Conv2D(input_channel_num, (3, 3), padding="same", kernel_initializer="he_normal")(x)    model = Model(inputs=inputs, outputs=x)    return model# UNet: code from https://github.com/pietz/unet-keras 
开发者ID:zxq2233,项目名称:n2n-watermark-remove,代码行数:31,代码来源:model.py


示例5: emit_PRelu

# 需要导入模块: from keras import layers [as 别名]# 或者: from keras.layers import PReLU [as 别名]def emit_PRelu(self, IR_node, in_scope=False):        if in_scope:            raise NotImplementedError        else:            code = "{:<15} = layers.PReLU(name='{}')({})".format(                IR_node.variable_name,                IR_node.name,                self.parent_variable_name(IR_node)            )            return code 
开发者ID:microsoft,项目名称:MMdnn,代码行数:12,代码来源:keras2_emitter.py


示例6: ResCNN

# 需要导入模块: from keras import layers [as 别名]# 或者: from keras.layers import PReLU [as 别名]def ResCNN(self, x):        """            repeat of two conv        :param x: tensor, input shape        :return: tensor, result of two conv of resnet        """        # pre-activation        # x = PReLU()(x)        x = Conv1D(self.filters_num,                                kernel_size=1,                                padding='SAME',                                kernel_regularizer=l2(self.l2),                                bias_regularizer=l2(self.l2),                                activation=self.activation_conv,                                )(x)        x = BatchNormalization()(x)        #x = PReLU()(x)        x = Conv1D(self.filters_num,                                kernel_size=1,                                padding='SAME',                                kernel_regularizer=l2(self.l2),                                bias_regularizer=l2(self.l2),                                activation=self.activation_conv,                                )(x)        x = BatchNormalization()(x)        # x = Dropout(self.dropout)(x)        x = PReLU()(x)        return x 
开发者ID:yongzhuo,项目名称:Keras-TextClassification,代码行数:30,代码来源:graph.py


示例7: __init__

# 需要导入模块: from keras import layers [as 别名]# 或者: from keras.layers import PReLU [as 别名]def __init__(self):        super(PReLUNet, self).__init__()        self.prelu = nn.PReLU(3) 
开发者ID:gzuidhof,项目名称:nn-transfer,代码行数:5,代码来源:test_layers.py


示例8: test_prelu

# 需要导入模块: from keras import layers [as 别名]# 或者: from keras.layers import PReLU [as 别名]def test_prelu(self):        keras_model = Sequential()        keras_model.add(PReLU(input_shape=(3, 32, 32), shared_axes=(2, 3),                              name='prelu'))        keras_model.compile(loss=keras.losses.categorical_crossentropy,                            optimizer=keras.optimizers.SGD())        pytorch_model = PReLUNet()        self.transfer(keras_model, pytorch_model)        self.assertEqualPrediction(keras_model, pytorch_model, self.test_data) 
开发者ID:gzuidhof,项目名称:nn-transfer,代码行数:13,代码来源:test_layers.py


示例9: test_prelu

# 需要导入模块: from keras import layers [as 别名]# 或者: from keras.layers import PReLU [as 别名]def test_prelu():    layer_test(layers.PReLU, kwargs={},               input_shape=(2, 3, 4)) 
开发者ID:hello-sea,项目名称:DeepLearning_Wavelet-LSTM,代码行数:5,代码来源:advanced_activations_test.py


示例10: test_prelu_share

# 需要导入模块: from keras import layers [as 别名]# 或者: from keras.layers import PReLU [as 别名]def test_prelu_share():    layer_test(layers.PReLU, kwargs={'shared_axes': 1},               input_shape=(2, 3, 4)) 
开发者ID:hello-sea,项目名称:DeepLearning_Wavelet-LSTM,代码行数:5,代码来源:advanced_activations_test.py


示例11: activate

# 需要导入模块: from keras import layers [as 别名]# 或者: from keras.layers import PReLU [as 别名]def activate(self, layer):        """ activate layer with given activation function            :param layer: the input layer            :return: the layer after activation        """        if self.activ == 'lrelu':            return layers.LeakyReLU(0.2)(layer)        elif self.activ == 'prelu':            return layers.PReLU()(layer)        else:            return Activation(self.activ)(layer) 
开发者ID:CongBao,项目名称:ImageEnhancer,代码行数:13,代码来源:enhancer_gan.py


示例12: activate

# 需要导入模块: from keras import layers [as 别名]# 或者: from keras.layers import PReLU [as 别名]def activate(self, layer):        """ activate layer with given activation function            :param layer: the input layer            :return: the layer after activation        """        if self.activ == 'lrelu':            return layers.LeakyReLU()(layer)        elif self.activ == 'prelu':            return layers.PReLU()(layer)        else:            return Activation(self.activ)(layer) 
开发者ID:CongBao,项目名称:ImageEnhancer,代码行数:13,代码来源:enhancer.py


示例13: RnnVersion1

# 需要导入模块: from keras import layers [as 别名]# 或者: from keras.layers import PReLU [as 别名]def RnnVersion1( n_recurrent=50, n_filters=30, dropout_rate=0.2, l2_penalty=0.0001,n_capsule = 10, n_routings = 5, capsule_dim = 16):    K.clear_session()    def conv_block(x, n, kernel_size):        x = Conv1D(n, kernel_size, activation='relu') (x)        x = Conv1D(n_filters, kernel_size, activation='relu') (x)        x_att = AttentionWithContext()(x)        x_avg = GlobalAveragePooling1D()(x)        x_max = GlobalMaxPooling1D()(x)        return concatenate([x_att, x_avg, x_max])      def att_max_avg_pooling(x):        x_att = AttentionWithContext()(x)        x_avg = GlobalAveragePooling1D()(x)        x_max = GlobalMaxPooling1D()(x)        return concatenate([x_att, x_avg, x_max])    inputs = Input(shape=(170,))    emb = Embedding(21099, 300,  trainable=True)(inputs)    # model 0    x0 = BatchNormalization()(emb)    x0 = SpatialDropout1D(dropout_rate)(x0)        x0 = Bidirectional(        CuDNNGRU(n_recurrent, return_sequences=True,                 kernel_regularizer=l2(l2_penalty),                 recurrent_regularizer=l2(l2_penalty)))(x0)    x0 = Conv1D(n_filters, kernel_size=3)(x0)    x0 = PReLU()(x0)#     x0 = Dropout(dropout_rate)(x0)    x0 = att_max_avg_pooling(x0)    # model 1    x1 = SpatialDropout1D(dropout_rate)(emb)    x1 = Bidirectional(        CuDNNGRU(2*n_recurrent, return_sequences=True,                 kernel_regularizer=l2(l2_penalty),                 recurrent_regularizer=l2(l2_penalty)))(x1)    x1 = Conv1D(2*n_filters, kernel_size=2)(x1)    x1 = PReLU()(x1)#     x1 = Dropout(dropout_rate)(x1)    x1 = att_max_avg_pooling(x1)    x = concatenate([x0, x1],name='concatenate')    #     fc = Dense(128, activation='sigmoid')(x)    outputs = Dense(6, activation='softmax')(x)#   , kernel_regularizer=l2(l2_penalty), activity_regularizer=l2(l2_penalty)    model = Model(inputs=inputs, outputs=outputs)    model.compile(loss='categorical_crossentropy', optimizer='Nadam',metrics =['accuracy'])    return model 
开发者ID:WeavingWong,项目名称:DigiX_HuaWei_Population_Age_Attribution_Predict,代码行数:51,代码来源:models.py


示例14: RnnVersion1

# 需要导入模块: from keras import layers [as 别名]# 或者: from keras.layers import PReLU [as 别名]def RnnVersion1( n_recurrent=50, n_filters=30, dropout_rate=0.2, l2_penalty=0.0001,n_capsule = 10, n_routings = 5, capsule_dim = 16):    K.clear_session()    def conv_block(x, n, kernel_size):        x = Conv1D(n, kernel_size, activation='relu') (x)        x = Conv1D(n_filters, kernel_size, activation='relu') (x)        x_att = AttentionWithContext()(x)        x_avg = GlobalAveragePooling1D()(x)        x_max = GlobalMaxPooling1D()(x)        return concatenate([x_att, x_avg, x_max])      def att_max_avg_pooling(x):        x_att = AttentionWithContext()(x)        x_avg = GlobalAveragePooling1D()(x)        x_max = GlobalMaxPooling1D()(x)        return concatenate([x_att, x_avg, x_max])    inputs = Input(shape=(100,))    emb = Embedding(9399, 300,  trainable=True)(inputs)    # model 0    x0 = BatchNormalization()(emb)    x0 = SpatialDropout1D(dropout_rate)(x0)        x0 = Bidirectional(        CuDNNGRU(n_recurrent, return_sequences=True,                 kernel_regularizer=l2(l2_penalty),                 recurrent_regularizer=l2(l2_penalty)))(x0)    x0 = Conv1D(n_filters, kernel_size=3)(x0)    x0 = PReLU()(x0)#     x0 = Dropout(dropout_rate)(x0)    x0 = att_max_avg_pooling(x0)    # model 1    x1 = SpatialDropout1D(dropout_rate)(emb)    x1 = Bidirectional(        CuDNNGRU(2*n_recurrent, return_sequences=True,                 kernel_regularizer=l2(l2_penalty),                 recurrent_regularizer=l2(l2_penalty)))(x1)    x1 = Conv1D(2*n_filters, kernel_size=2)(x1)    x1 = PReLU()(x1)#     x1 = Dropout(dropout_rate)(x1)    x1 = att_max_avg_pooling(x1)    x = concatenate([x0, x1],name='concatenate')        fc = Dense(128, activation='relu')(x)    outputs = Dense(6, activation='softmax')(fc)#   , kernel_regularizer=l2(l2_penalty), activity_regularizer=l2(l2_penalty)    model = Model(inputs=inputs, outputs=outputs)    model.compile(loss='categorical_crossentropy', optimizer='Nadam',metrics =['accuracy'])    return model 
开发者ID:WeavingWong,项目名称:DigiX_HuaWei_Population_Age_Attribution_Predict,代码行数:51,代码来源:rnn_feature.py


示例15: header_code

# 需要导入模块: from keras import layers [as 别名]# 或者: from keras.layers import PReLU [as 别名]def header_code(self):        return """import kerasfrom keras.models import Modelfrom keras import layersimport keras.backend as Kimport numpy as npfrom keras.layers.core import Lambdaimport tensorflow as tfweights_dict = dict()def load_weights_from_file(weight_file):    try:        weights_dict = np.load(weight_file, allow_pickle=True).item()    except:        weights_dict = np.load(weight_file, allow_pickle=True, encoding='bytes').item()    return weights_dictdef set_layer_weights(model, weights_dict):    for layer in model.layers:        if layer.name in weights_dict:            cur_dict = weights_dict[layer.name]            current_layer_parameters = list()            if layer.__class__.__name__ == "BatchNormalization":                if 'scale' in cur_dict:                    current_layer_parameters.append(cur_dict['scale'])                if 'bias' in cur_dict:                    current_layer_parameters.append(cur_dict['bias'])                current_layer_parameters.extend([cur_dict['mean'], cur_dict['var']])            elif layer.__class__.__name__ == "Scale":                if 'scale' in cur_dict:                    current_layer_parameters.append(cur_dict['scale'])                if 'bias' in cur_dict:                    current_layer_parameters.append(cur_dict['bias'])            elif layer.__class__.__name__ == "SeparableConv2D":                current_layer_parameters = [cur_dict['depthwise_filter'], cur_dict['pointwise_filter']]                if 'bias' in cur_dict:                    current_layer_parameters.append(cur_dict['bias'])            elif layer.__class__.__name__ == "Embedding":                current_layer_parameters.append(cur_dict['weights'])            elif layer.__class__.__name__ == "PReLU":                gamma =  np.ones(list(layer.input_shape[1:]))*cur_dict['gamma']                current_layer_parameters.append(gamma)            else:                # rot                 if 'weights' in cur_dict:                    current_layer_parameters = [cur_dict['weights']]                if 'bias' in cur_dict:                    current_layer_parameters.append(cur_dict['bias'])            model.get_layer(layer.name).set_weights(current_layer_parameters)    return modeldef KitModel(weight_file = None):    global weights_dict    weights_dict = load_weights_from_file(weight_file) if not weight_file == None else None        """ 
开发者ID:microsoft,项目名称:MMdnn,代码行数:62,代码来源:keras2_emitter.py


万事OK自学网:51自学网_软件自学网_CAD自学网自学excel、自学PS、自学CAD、自学C语言、自学css3实例,是一个通过网络自主学习工作技能的自学平台,网友喜欢的软件自学网站。